精英家教网 > 高中数学 > 题目详情
9.若x,y满足约束条件$\left\{\begin{array}{l}2x-y≥0\\ x+2y-2≥0\\ x-1≤0.\end{array}\right.$则$z=\frac{y}{x}$的最大值为(  )
A.1B.2C.3D.4

分析 首先画出可行域,利用目标函数的几何意义求最大值.

解答 解:由约束条件得到可行域如图:则$z=\frac{y}{x}$的最大值为表示原点与区域内连接的直线的斜率的最大值,所以最大值为2.
故选:B.

点评 本题考查了简单线性规划问题;求目标函数的最优解,利用其几何意义.体现了数形结合的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{a_{n+1}}$(n≥1,n∈Z)
(1)求数列{an}的通项公式an
(2)求数列{n2an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下列命题中,所有正确命题的序号为①②③④
 ①若$\overrightarrow{n_1}、\overrightarrow{n_2}$分别是平面α、β的法向量,则$\overrightarrow{n_1}$∥$\overrightarrow{n_2}$?α∥β
 ②若$\overrightarrow{n_1}、\overrightarrow{n_2}$分别是平面α、β的法向量,则α⊥β?$\overrightarrow{n_1}•\overrightarrow{n_2}=0$
 ③若$\overrightarrow n$是平面α的法向量,$\overrightarrow a$与α共面,则$\overrightarrow n$⊥$\overrightarrow a$.
 ④若两个平面的法向量不垂直,则这两个平面一定不垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知当$x∈[{0,\frac{π}{4}}]$时,函数$f(x)=2sin(ωx+\frac{π}{6})-1$(ω>0)有且仅有5个零点,则ω的取值范围是$[16,\frac{56}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面向量$\overrightarrow a=({{x_1},{y_1}}),\overrightarrow b=({{x_2},{y_2}})$,若$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4,\overrightarrow a•\overrightarrow b=-12$,则$\frac{{{x_1}+{y_1}}}{{{x_2}+{y_2}}}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{3}$对称,且图象上相邻最高点的距离为π.将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位后,得到y=g(x)的图象,则g(x)的单调递减区间为.
A.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZB.[kπ-$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ+$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知O为直角坐标系原点,P,Q的坐标满足不等式组$\left\{\begin{array}{l}4x+3y-25≤0\\ x-2y+2≤0\\ x-1≥0\end{array}\right.$,则cos∠POQ的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow a$=(1,-$\sqrt{3}$),$\overrightarrow b$=(sinx,cosx),f(x)=$\overrightarrow a$•$\overrightarrow b$,若f(θ)=0,求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(θ+\frac{π}{4})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.把语文、数学、英语、物理、化学这五门课程安排在一天的五节课中,如果数学必须比语文先上,则不同的排法有多少种?(  )
A.24B.60C.72D.120

查看答案和解析>>

同步练习册答案