精英家教网 > 高中数学 > 题目详情
19.把语文、数学、英语、物理、化学这五门课程安排在一天的五节课中,如果数学必须比语文先上,则不同的排法有多少种?(  )
A.24B.60C.72D.120

分析 根据题意,先固定数学、语文的顺序,分析其空位情况,依次插入英语、物理、化学三科,由分步计数原理计算可得答案.

解答 解:根据题意,数学必须比语文先上,
则将数学排在语文之前,排好后有3个空位;
在3个空位中任选1个,安排英语,有3种情况,排好后,有4个空位,
在4个空位中任选1个,安排物理,有4种情况,排好后,有5个空位,
在5个空位中任选1个,安排化学,有5种情况;
则一共有3×4×5=60种不同的排法;
故选:B.

点评 本题考查排列组合的实际应用,可以先分析固定顺序的元素,再依次插入不受限制的元素,可以利用分步计数原理分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若x,y满足约束条件$\left\{\begin{array}{l}2x-y≥0\\ x+2y-2≥0\\ x-1≤0.\end{array}\right.$则$z=\frac{y}{x}$的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.《九章算术》是东方数学思想之源,在卷五《商功》中有以下问题:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?译文:如图所示的几何体是三个侧面皆为等腰梯形,其他两面为直角三角形的五面体,(前端)下宽6尺,上宽一丈,深3尺,末端宽8尺,无深,长7尺,则它的体积是84立方尺.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$表示的平面区域为D,若存在x0∈D,使得y=2x0+$\frac{m{x}_{0}}{|{x}_{0}|}$,则实数m的取值范围是[-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Sn=na1+(n-1)a2+…+2an-1+an
(1)若{an}是等差数列,且S1=5,S2=18,求an
(2)若{an}是等比数列,且S1=3,S2=15,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线x=a分别与曲线y=2x+1,y=x+lnx交于A,B,则|AB|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD⊥底面ABCD,PA⊥PC;
(1)求证:平面PAB⊥平面PCD;
(2)若过点B的直线l垂直平面PCD,求证:l∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P(x,y)为区域$\left\{\begin{array}{l}(x-y)(x+y)≥0\\-1≤x≤1\end{array}\right.$内的任意一点,A(2,1),则$\overrightarrow{OA}•\overrightarrow{OP}$的最大值,最小值分别为(  )
A.3,-3B.1,-3C.1,-1D.3,-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex(sinx+cosx).
(1)如果对于任意的x∈[0,$\frac{π}{2}$],f(x)≥kx+excosx恒成立,求实数k的取值范围;
(2)若x∈[-$\frac{2015π}{2}$,$\frac{2017π}{2}$],过点M($\frac{π-1}{2}$,0)作函数f(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{xn},求数列{xn}的所有项之和.

查看答案和解析>>

同步练习册答案