分析 (1)设数列{an}的公差为d,由已知求出首项和公差,则等差数列的通项公式可求;
(2)设数列{an}的公比为q,由已知求出首项和公比,得到等比数列的通项公式,代入Sn=na1+(n-1)a2+…+2an-1+an.由错位相减法求得Sn.
解答 解:(1)设数列{an}的公差为d,则S1=a1=5,S2=2a1+a2=10+a2=18,
∴a2=8,d=a2-a1=3,
∴an=5+3(n-1)=3n+2;
(2)设数列{an}的公比为q,则S1=a1=3,S2=2a1+a2=6+a2=15,
∴a2=9,$q=\frac{{a}_{2}}{{a}_{1}}=3$,
∴${a}_{n}=3×{3}^{n-1}={3}^{n}$,
∴Sn=n×3+(n-1)×32+…+2×3n-1+3n,①
3Sn=n×32+(n-1)×33+…+2×3n+3n+1,②
②-①,得$2{S}_{n}=-3n+({3}^{2}+{3}^{3}+…+{3}^{n})+{3}^{n+1}$=$-3n+\frac{{3}^{2}(1-{3}^{n-1})}{1-3}+{3}^{n+1}$
=$-3n-\frac{9}{2}+\frac{{3}^{n+1}}{2}+{3}^{n+1}$=$\frac{{3}^{n+2}-6n-9}{2}$.
∴Sn=$\frac{{3}^{n+2}-6n-9}{4}$.
点评 本题考查等差数列与等比数列的性质,训练了错位相减法求数列的前n项和,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | CE与BC1异面且垂直 | B. | AB1⊥C1F | ||
| C. | △C1DF是直角三角形 | D. | DF的长为$\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | -$\frac{2}{5}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | 60 | C. | 72 | D. | 120 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com