精英家教网 > 高中数学 > 题目详情
14.已知Sn=na1+(n-1)a2+…+2an-1+an
(1)若{an}是等差数列,且S1=5,S2=18,求an
(2)若{an}是等比数列,且S1=3,S2=15,求Sn

分析 (1)设数列{an}的公差为d,由已知求出首项和公差,则等差数列的通项公式可求;
(2)设数列{an}的公比为q,由已知求出首项和公比,得到等比数列的通项公式,代入Sn=na1+(n-1)a2+…+2an-1+an.由错位相减法求得Sn

解答 解:(1)设数列{an}的公差为d,则S1=a1=5,S2=2a1+a2=10+a2=18,
∴a2=8,d=a2-a1=3,
∴an=5+3(n-1)=3n+2;
(2)设数列{an}的公比为q,则S1=a1=3,S2=2a1+a2=6+a2=15,
∴a2=9,$q=\frac{{a}_{2}}{{a}_{1}}=3$,
∴${a}_{n}=3×{3}^{n-1}={3}^{n}$,
∴Sn=n×3+(n-1)×32+…+2×3n-1+3n,①
3Sn=n×32+(n-1)×33+…+2×3n+3n+1,②
②-①,得$2{S}_{n}=-3n+({3}^{2}+{3}^{3}+…+{3}^{n})+{3}^{n+1}$=$-3n+\frac{{3}^{2}(1-{3}^{n-1})}{1-3}+{3}^{n+1}$
=$-3n-\frac{9}{2}+\frac{{3}^{n+1}}{2}+{3}^{n+1}$=$\frac{{3}^{n+2}-6n-9}{2}$.
∴Sn=$\frac{{3}^{n+2}-6n-9}{4}$.

点评 本题考查等差数列与等比数列的性质,训练了错位相减法求数列的前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知平面向量$\overrightarrow a=({{x_1},{y_1}}),\overrightarrow b=({{x_2},{y_2}})$,若$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4,\overrightarrow a•\overrightarrow b=-12$,则$\frac{{{x_1}+{y_1}}}{{{x_2}+{y_2}}}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,AA1=AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的点,AB1,DF交于点E,且AB1⊥DF,则下列结论中不正确的是(  )
A.CE与BC1异面且垂直B.AB1⊥C1F
C.△C1DF是直角三角形D.DF的长为$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若sinx=2sin(x+$\frac{π}{2}$),则cosxcos(x+$\frac{π}{2}$)=(  )
A.$\frac{2}{5}$B.-$\frac{2}{5}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,PA与四边形ABCD所在平面垂直,且PA=BC=CD=BD,AB=AD,PD⊥DC.
(1)求证:AB⊥BC;
(2)若PA=$\sqrt{3}$,E为PC的中点,设直线PD与平面BDE所成角为θ,求sin θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.把语文、数学、英语、物理、化学这五门课程安排在一天的五节课中,如果数学必须比语文先上,则不同的排法有多少种?(  )
A.24B.60C.72D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线E:y2=4x的准线为l,焦点为F,O为坐标原点.
(1)求过点O,F,且与l相切的圆的方程;
(2)过F的直线交抛物线E于A,B两点,A关于x轴的对称点为A′,求证:直线A′B过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}满足${a_1}=0,{a_2}=2,{a_{n+2}}=({1+{{cos}^2}\frac{nπ}{2}}){a_n}+4{sin^2}\frac{nπ}{2}$,n=1,2,3,….
(1)求a3,a4,并求数列{an}的通项公式;
(2)设bn=$\frac{{{a_{2n-1}}}}{{{a_{2n}}}}$,记F(m,n)=$\sum_{i=m}^n{b_i}({m,n∈{N^*},m<n})$,求证:m<n,F(m,n)<4对任意的;
(3)设Sk=a1+a3+a5+…+a2k-1,Tk=a2+a4+a6+…+a2k,Wk=$\frac{{2{S_k}}}{{2+{T_k}}}({k∈{N^*}})$,求使Wk>1的所有k的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA=AB=$\frac{1}{2}$AD=2,PB=2$\sqrt{2}$,PA⊥AD,底面ABCD为平行四边形,∠ADC=60°,E为PD的中点.
(Ⅰ)求证:AB⊥PC;
(Ⅱ)求多面体PABCE的体积.

查看答案和解析>>

同步练习册答案