精英家教网 > 高中数学 > 题目详情
5.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,AA1=AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的点,AB1,DF交于点E,且AB1⊥DF,则下列结论中不正确的是(  )
A.CE与BC1异面且垂直B.AB1⊥C1F
C.△C1DF是直角三角形D.DF的长为$\frac{{\sqrt{6}}}{3}$

分析 利用空间线面位置关系的判定定理和性质逐个进行判断.

解答 解:对于A,∵BC1?平面B1C1CB,CE?平面B1C1CB,且C∈平面B1C1CB,
∴CE与BC1是异面直线,
∵AA1∥CC1,AA1⊥平面ABC,
∴CC1⊥平面ABC,∴CC1⊥AC,
又AC⊥BC,BC∩CC1=C,
∴AC⊥平面B1C1CB,又BC1?平面B1C1CB,
∴AC⊥BC1
又四边形B1C1CB是正方形,∴BC1⊥B1C,
又B1C∩AC=C,
∴BC1⊥平面AB1C,∵CE?平面AB1C,
∴BC1⊥CE,故A正确;
对于B,∵C1A1=C1B1,D是A1B1的中点,∴C1D⊥A1B1
由AA1⊥底面A1B1C1可得AA1⊥C1D,
又A1B1∩AA1=A1,∴C1D⊥平面ABB1A1
∴C1D⊥AB1,又DF⊥AB1,C1D∩DF=D,
∴AB1⊥平面C1DF,
∴AB1⊥C1F,故B正确;
对于C,由C1D⊥平面ABB1A1可得C1D⊥DF,
故△C1DF是直角三角形,故C正确;
对于D,∵AC=BC=AA1=1,∠ACB=90°,
∴A1B1=AB=$\sqrt{2}$,AB1=$\sqrt{3}$,∴DB1=$\frac{\sqrt{2}}{2}$,
∵AB1⊥DF,∴∠FDB1=∠AB1F=∠A1AB1
∴cos∠FDB1=cos∠A1AB1,即$\frac{D{B}_{1}}{DF}=\frac{A{A}_{1}}{A{B}_{1}}$,
∴$\frac{\frac{\sqrt{2}}{2}}{DF}=\frac{1}{\sqrt{3}}$,解得DF=$\frac{\sqrt{6}}{2}$,故D错误.
故选D.

点评 本题考查了空间线面位置关系的判断,掌握判定定理和性质是解题关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则$\overrightarrow{a}$在$\overrightarrow{{e}_{1}}$上的投影是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.△ABC是底边边长为2$\sqrt{2}$的等腰直角三角形,P是以直角顶点C为圆心,半径为1的圆上任意一点,若m≤$\overrightarrow{AP}$•$\overrightarrow{PB}$≤n,则n-m的最小值为(  )
A.4$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足:a1=-2,a2=1,且an+1=-$\frac{1}{2}$(an+an+2),则{an}的前n项和Sn=$\left\{\begin{array}{l}{-k,n=2k}\\{k-3,n=2k-1}\end{array}\right.$(k∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l经过抛物线y2=4x的焦点F,且与抛物线交于A,B两点(点A在第一象限)若$\overrightarrow{BA}=4\overrightarrow{BF}$,则△AOB的面积为(  )
A.$\frac{8}{3}\sqrt{3}$B.$\frac{4}{3}\sqrt{3}$C.$\frac{8}{3}\sqrt{2}$D.$\frac{4}{3}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.《九章算术》是东方数学思想之源,在卷五《商功》中有以下问题:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?译文:如图所示的几何体是三个侧面皆为等腰梯形,其他两面为直角三角形的五面体,(前端)下宽6尺,上宽一丈,深3尺,末端宽8尺,无深,长7尺,则它的体积是84立方尺.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈(-∞,0),2x>3x;命题q:?x∈(0,$\frac{π}{2}$),sinx>x,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∨qC.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Sn=na1+(n-1)a2+…+2an-1+an
(1)若{an}是等差数列,且S1=5,S2=18,求an
(2)若{an}是等比数列,且S1=3,S2=15,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,一动圆经过点($\frac{1}{2}$,0)且与直线x=-$\frac{1}{2}$相切,设该动圆圆心的轨迹方程为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)设P是曲线E上的动点,点P的横坐标为x0,点B,C在y轴上,△PBC的内切圆的方程为(x-1)2+y2=1,将|BC|表示成x0的函数,并求△PBC面积的最小值.

查看答案和解析>>

同步练习册答案