精英家教网 > 高中数学 > 题目详情
13.已知数列{an}满足:a1=-2,a2=1,且an+1=-$\frac{1}{2}$(an+an+2),则{an}的前n项和Sn=$\left\{\begin{array}{l}{-k,n=2k}\\{k-3,n=2k-1}\end{array}\right.$(k∈N*).

分析 an+1=-$\frac{1}{2}$(an+an+2),可得an+2+an+1=-(an+1+an).利用等比数列的通项公式可得:an+1+an=(-1)n.可得a2k-1+a2k=-1,a2k+1+a2k=1(k∈N*).对n分类讨论,即可得出前n项和.

解答 解:∵an+1=-$\frac{1}{2}$(an+an+2),
∴an+2+an+1=-(an+1+an).
∴数列{an+1+an}是等比数列,首项为-1,公比为-1.
∴an+1+an=(-1)n
∴a2k-1+a2k=-1,a2k+1+a2k=1(k∈N*).
∴n=2k时,{an}的前n项和Sn=S2k=-k.
n=2k-1时,{an}的前n项和Sn=-2+(k-1)=k-3.(k=1时也成立).
∴,{an}的前n项和Sn=$\left\{\begin{array}{l}{-k,n=2k}\\{k-3,n=2k-1}\end{array}\right.$(k∈N*).
故答案为:$\left\{\begin{array}{l}{-k,n=2k}\\{k-3,n=2k-1}\end{array}\right.$(k∈N*).

点评 本题考查了数列递推关系、等比数列的通项公式、分组求和、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知$\left\{\begin{array}{l}x+y-1≥0\\ x+2y-4≤0\\ x-y-1≤0\end{array}\right.$,则$\frac{y+1}{x+3}$的最小值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面向量$\overrightarrow a=({{x_1},{y_1}}),\overrightarrow b=({{x_2},{y_2}})$,若$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4,\overrightarrow a•\overrightarrow b=-12$,则$\frac{{{x_1}+{y_1}}}{{{x_2}+{y_2}}}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知O为直角坐标系原点,P,Q的坐标满足不等式组$\left\{\begin{array}{l}4x+3y-25≤0\\ x-2y+2≤0\\ x-1≥0\end{array}\right.$,则cos∠POQ的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知A(-1,0),B(3,2),C(0,-2),则过这三点的圆方程为(  )
A.(x-$\frac{3}{2}$)2+y2=25B.(x+$\frac{3}{2}$)2+y2=$\frac{1}{4}$C.(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$D.x2+(y-$\frac{3}{2}$)2=$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow a$=(1,-$\sqrt{3}$),$\overrightarrow b$=(sinx,cosx),f(x)=$\overrightarrow a$•$\overrightarrow b$,若f(θ)=0,求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(θ+\frac{π}{4})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,AA1=AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的点,AB1,DF交于点E,且AB1⊥DF,则下列结论中不正确的是(  )
A.CE与BC1异面且垂直B.AB1⊥C1F
C.△C1DF是直角三角形D.DF的长为$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若sinx=2sin(x+$\frac{π}{2}$),则cosxcos(x+$\frac{π}{2}$)=(  )
A.$\frac{2}{5}$B.-$\frac{2}{5}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}满足${a_1}=0,{a_2}=2,{a_{n+2}}=({1+{{cos}^2}\frac{nπ}{2}}){a_n}+4{sin^2}\frac{nπ}{2}$,n=1,2,3,….
(1)求a3,a4,并求数列{an}的通项公式;
(2)设bn=$\frac{{{a_{2n-1}}}}{{{a_{2n}}}}$,记F(m,n)=$\sum_{i=m}^n{b_i}({m,n∈{N^*},m<n})$,求证:m<n,F(m,n)<4对任意的;
(3)设Sk=a1+a3+a5+…+a2k-1,Tk=a2+a4+a6+…+a2k,Wk=$\frac{{2{S_k}}}{{2+{T_k}}}({k∈{N^*}})$,求使Wk>1的所有k的值,并说明理由.

查看答案和解析>>

同步练习册答案