精英家教网 > 高中数学 > 题目详情
9.如图所示,PA与四边形ABCD所在平面垂直,且PA=BC=CD=BD,AB=AD,PD⊥DC.
(1)求证:AB⊥BC;
(2)若PA=$\sqrt{3}$,E为PC的中点,设直线PD与平面BDE所成角为θ,求sin θ.

分析 (1)推导出PB⊥BC,PA⊥BC,从而BC⊥平面PAB,由此能证明AB⊥BC.
(2)分别以BC,BA所在直线为x,y轴,过B且平行于PA的直线为z轴建立空间直角坐标系,利用向量法能求出sin θ.

解答 证明:(1)由PA⊥平面ABCD,AB=AD,可得PB=PD,
又BC=CD,PC=PC,所以△PBC≌△PDC,所以∠PBC=∠PDC.
因为PD⊥DC,所以PB⊥BC.(3分)
因为PA⊥平面ABCD,BC?平面ABCD,
所以PA⊥BC.
又PA∩PB=P,所以BC⊥平面PAB.
因为AB?平面PAB,所以AB⊥BC.(5分)
解:(2)由BD=BC=CD,AB⊥BC,可得∠ABD=30°,
又已知AB=AD,BD=PA=$\sqrt{3}$,所以AB=1.
如图所示,分别以BC,BA所在直线为x,y轴,过B且平行于PA的直线为z轴建立空间直角坐标系,
则B(0,0,0),P(0,1,$\sqrt{3}$),C($\sqrt{3}$,0,0),E($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),D($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$,0),
所以$\overrightarrow{PD}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,-$\sqrt{3}$),$\overrightarrow{BE}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BD}$=($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$,0).
设平面BDE的法向量n=(x,y,z),(8分)
则$\left\{\begin{array}{l}\overrightarrow{BE}•n=0\\ \overrightarrow{BD}•n=0\end{array}$即$\left\{\begin{array}{l}\frac{\sqrt{3}}{2}x+\frac{1}{2}y+\frac{\sqrt{3}}{2}z=0\\ \frac{\sqrt{3}}{2}x+\frac{3}{2}y=0\end{array}$取z=-2,得n=(3,-$\sqrt{3}$,-2),(10分)
所以sin θ=$\frac{|\overrightarrow{PD}•\overrightarrow{n}|}{|\overrightarrow{PD}|•|\overrightarrow{n}|}$=$\frac{\frac{\sqrt{3}}{2}×3-\frac{1}{2}×\sqrt{3}+(\sqrt{3})×-2}{\sqrt{4}•\sqrt{16}}$=$\frac{3\sqrt{3}}{8}$.(12分)

点评 本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足$\left\{\begin{array}{l}{x+y-2≤0}\\{2x-y+2≥0}\\{y≥0}\end{array}\right.$,则目标函数z=x-y的最小值等于(  )
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l经过抛物线y2=4x的焦点F,且与抛物线交于A,B两点(点A在第一象限)若$\overrightarrow{BA}=4\overrightarrow{BF}$,则△AOB的面积为(  )
A.$\frac{8}{3}\sqrt{3}$B.$\frac{4}{3}\sqrt{3}$C.$\frac{8}{3}\sqrt{2}$D.$\frac{4}{3}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈(-∞,0),2x>3x;命题q:?x∈(0,$\frac{π}{2}$),sinx>x,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∨qC.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC中,内角A,B,C所对的边分别为a,b,c,若$\frac{b}{c}$=$\frac{cosA}{1+cosC}$,则sin(2A+$\frac{π}{6}$)的取值范围是(  )
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.(-$\frac{1}{2}$,1]C.($\frac{1}{2}$,1]D.[-1,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Sn=na1+(n-1)a2+…+2an-1+an
(1)若{an}是等差数列,且S1=5,S2=18,求an
(2)若{an}是等比数列,且S1=3,S2=15,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,平面ABC⊥平面APC,AB=BC=AP=PC=$\sqrt{2}$,∠ABC=∠APC=90°.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)若点M在棱BC上,且二面角M-PA-C的余弦值为$\frac{3\sqrt{11}}{11}$,求BM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的前n项和为Sn,a4=10,S4=28,数列$\left\{{\frac{1}{{{S_n}+2}}}\right\}$的前n项和为Tn,则T2017=$\frac{2017}{4038}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知R是实数集,集合A={x|x2-x-2≤0},$B=\left\{{x|\frac{2x-1}{x-6}≥0}\right\}$,则A∩(∁RB)=(  )
A.(1,6)B.[-1,2]C.$({\frac{1}{2},6})$D.$({\frac{1}{2},2}]$

查看答案和解析>>

同步练习册答案