精英家教网 > 高中数学 > 题目详情
10.“x>1”是“$\frac{1}{x}<1$”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据不等式的关系结合充分条件和必要条件的定义进行判断即可.

解答 解:若x>1,则0<$\frac{1}{x}<1$,则$\frac{1}{x}<1$成立,即充分性成立,
若当x<0时,$\frac{1}{x}<1$成立,但x>1不成立,即必要性不成立,
即“x>1”是“$\frac{1}{x}<1$”成立的充分不必要条件,
故选:A.

点评 本题主要考查充分条件和必要条件的判断,根据不等式的性质结合充分条件和必要条件的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(3k,3),$\overrightarrow{b}$=(-6,k-7)
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求k的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求|$\overrightarrow{a}$-2$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对任意a∈R,曲线y=ex(x2+ax+1-2a)在点P(0,1-2a)处的切线l与圆C:(x-1)2+y2=16的位置关系是(  )
A.相交B.相切C.相离D.以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(n)=\left\{\begin{array}{l}n-3({n≥10})\;,\;\;\\ f[{f({n+5})}]({n<10})\;,\;\;\end{array}\right.$其中n∈N,则f(9)等于(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)={(6-x-{x^2})^{\frac{3}{2}}}$的单调递减区间为(  )
A.$[{-\frac{1}{2},2}]$B.$[{-3,-\frac{1}{2}}]$C.$[-\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,a1=1,a2=6,an+2=an+1-an,则a2016=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a=({\frac{1}{2},sinα})$,$\overrightarrow b=({sinα,1})$,若$\overrightarrow a∥\overrightarrow b$,则锐角α为(  )
A.30°B.60°C.45°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x>-1},则下列选项正确的是(  )
A.0⊆AB.{0}⊆AC.∅∈AD.{0}∈A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知实数a,b均大于0,且$({\frac{1}{a}+\frac{1}{b}})\sqrt{{a^2}+{b^2}}≥2m-4$总成立,则实数m的取值范围是(-∞,2+$\sqrt{2}$].

查看答案和解析>>

同步练习册答案