【题目】已知函数
.
(1)求函数f(x)的定义域和值域;
(2)若f(x)≤1,求x的取值范围.
【答案】
(1)解:由题意得,4﹣8x≥0,
则23x≤22,即3x≤2,解得x≥
,
所以函数f(x)的定义域是(﹣∞,
];
又4﹣8x<4,所以
,
即函数f(x)的值域为[0,2)
(2)解:由f(x)≤1得,
,
则0≤4﹣8x≤1,即3≤8x≤4,
两边取以8为底的对数,解得
,
所以不等式的解集是 ![]()
【解析】(1)由解析式列出不等式,由指数的运算性质求出函数的定义域,由指数函数的性质求出值域;(2)由解析式化简f(x)≤1,利用对数函数的性质求出不等式的解集.
【考点精析】解答此题的关键在于理解函数的定义域及其求法的相关知识,掌握求函数的定义域时,一般遵循以下原则:①
是整式时,定义域是全体实数;②
是分式函数时,定义域是使分母不为零的一切实数;③
是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零,以及对函数的值域的理解,了解求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.
科目:高中数学 来源: 题型:
【题目】某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为
吨,(0≤t≤24)
(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?
(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是
,D是AC的中点. ![]()
(1)求证:B1C∥平面A1BD;
(2)求二面角A1﹣BD﹣A的大小;
(3)求直线AB1与平面A1BD所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(ax+1)+
﹣x2﹣ax(a∈R)
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a≥
时,设g(x)=ln[x2(ax+1)]+
﹣3ax﹣f(x)(x>0)的两个极值点x1 , x2(x1<x2)恰为φ(x)=lnx﹣cx2﹣bx的零点,求y=(x1﹣x2)φ′(
)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,
轴的正半轴为极轴,建立极坐标系,两坐标系中取相同的单位长度,已知曲线
的方程为
,点
.
(1)求曲线
的直角坐标方程和点
的直角坐标;
(2)设
为曲线
上一动点,以
为对角线的矩形
的一边平行于极轴,求矩形
周长的最小值及此时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为了了解
、
两个班级学生在本学期前两个月内观看电视节目的时长,分别从这两个班级中随机抽取10名学生进行调查,得到他们观看电视节目的时长分别为(单位:小时):
班:5、5、7、8、9、11、14、20、22、31;
班:3、9、11、12、21、25、26、30、31、35.
将上述数据作为样本.
(Ⅰ)绘制茎叶图,并从所绘制的茎叶图中提取样本数据信息(至少写出2条);
(Ⅱ)分别求样本中
、
两个班级学生的平均观看时长,并估计哪个班级的学生平均观看的时间较长;
(Ⅲ)从
班的样本数据中随机抽取一个不超过11的数据记为
,从
班的样本数据中随机抽取一个不超过11的数据记为
,求
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的部分图象如图所示.
![]()
(1) 求函数
的解析式;
(2) 如何由函数
的通过适当图象的变换得到函数
的图象, 写出变换过程;
(3) 若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中a∈R,若对任意的非零的实数x1 , 存在唯一的非零的实数x2(x2≠x1),使得f(x2)=f(x1)成立,则k的最小值为( )
A.![]()
B.5
C.6
D.8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com