分析 根据条件及向量加法、减法,及数乘的几何意义及其运算便可得到$\overrightarrow{OM}=(1-m)\overrightarrow{OA}+m\overrightarrow{OB}$,从而有$\overrightarrow{OC}=k\overrightarrow{OM}=k(1-m)\overrightarrow{OA}+km\overrightarrow{OB}$,由平面向量基本定理便得到$\left\{\begin{array}{l}{k(1-m)=t}\\{km=3t}\end{array}\right.$,解出m即可.
解答 解:如图,$\overrightarrow{OM}=\overrightarrow{OA}+\overrightarrow{AM}$=$\overrightarrow{OA}+m\overrightarrow{AB}$=$\overrightarrow{OA}+m(\overrightarrow{OB}-\overrightarrow{OA})$=$(1-m)\overrightarrow{OA}+m\overrightarrow{OB}$;![]()
O,M,C三点共线;
∴存在实数k,$\overrightarrow{OC}=k\overrightarrow{OM}$=$k(1-m)\overrightarrow{OA}+mk\overrightarrow{OB}$;
又$\overrightarrow{OC}=t\overrightarrow{OA}+3t\overrightarrow{OB}$;
∴$\left\{\begin{array}{l}{k(1-m)=t}\\{mk=3t}\end{array}\right.$;
解得$m=\frac{3}{4}$.
故答案为:$\frac{3}{4}$.
点评 考查向量加法、减法,及数乘的几何意义及其运算,平面向量基本定理,以及共面向量基本定理.
科目:高中数学 来源: 题型:选择题
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
| 年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2或-3 | B. | -3 | C. | 0 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com