精英家教网 > 高中数学 > 题目详情

【题目】已知函数 f(x)=x2-2x+1+alnx 有两个极值点 x1,x2 , 且x1<x2 ,则( )
A.
B.
C.
D.

【答案】D
【解析】 的定义域为 ,求导得 ,因为 有两个极值点 ,所以 是方程 的两根,又 ,且 ,所以 ,所以 ,令 ,所以 上为增函数,所以 ,所以 .选D.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的极值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集为R,函数f(x)= 的定义域为M,则RM=(
A.(﹣∞,﹣1)
B.[1,+∞)
C.(1,+∞)
D.(﹣∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)是定义在a,b上的增函数,其中a,b∈R且0<b<﹣a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(﹣x),则对于F(x)有以下四个说法:
①定义域是[﹣b,b];②是偶函数;③最小值是0;④在定义域内单调递增.
其中正确的有(填入你认为正确的所有序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】r是方程f(x)=0的根,选取x0作为r的初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线ll的方程为y=f(x0)+(x-x0),求出lx轴交点的横坐标x1=x0,称x1r的一次近似值。过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴交点的横坐标x2=x1,称x2r的二次近似值。重复以上过程,得r的近似值序列,其中,,称为rn+1次近似值,上式称为牛顿迭代公式。已知是方程-6=0的一个根,若取x0=2作为r的初始近似值,则在保留四位小数的前提下,

A. 2.4494 B. 2.4495 C. 2.4496 D. 2.4497

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .经计算得
(1)由上面数据,试猜想出一个一般性结论;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

2)设点上,点上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点 的四个顶点构成的四边形面积为.

(1)求椭圆的方程;

(2)在椭圆上是否存在相异两点,使其满足:①直线与直线的斜率互为相反数;②线段的中点在轴上,若存在,求出的平分线与椭圆相交所得弦的弦长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C上任意一点M到点F(0,1)的距离比它到直线 的距离小1.
(1)求曲线C的方程;
(2)过点 P(2,2)的直线m与曲线C交于A,B两点,设当△AOB的面积为4时(O为坐标原点),求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,与函数y=2x表示同一函数的是(
A.y=
B.y=
C.y=( 2
D.y=log24x

查看答案和解析>>

同步练习册答案