精英家教网 > 高中数学 > 题目详情
(2012•浙江模拟)已知数列{an}满足a1=1,an+1=(n2+n-λ)an,其中λ为实常数,则数列{an}(  )
分析:由于
an+1
an
=n2+n-λ,而 n2+n-λ 不是固定的常数,不满足等比数列的定义.若是等差数列,则由 a1+a3=2 a2,解得 λ=3,此时,an+1=(n2+n-3)an,显然,不满足等差数列的定义,从而得出结论.
解答:解:由a1=1,an+1=(n2+n-λ)an 可得
an+1
an
=n2+n-λ,由于 n2+n-λ 不是固定的常数,故数列不可能是等比数列.
若数列是等差数列,则应有 a1+a3=2 a2,解得 λ=3.
此时,an+1=(n2+n-3)an,显然,此数列不是等差数列,
故选A.
点评:本题主要考查等差关系的确定、等比关系的确定,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知cos(x-
π
6
)=-
3
3
,则cosx+cos(x-
π
3
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知函数f(x)=(x2-ax+1)•ex
(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为
63
64
,则事件A恰好发生一次的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)焦点在x轴上的椭圆
x2
4a
+
y2
a2+1
=1
的离心率的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为(  )

查看答案和解析>>

同步练习册答案