精英家教网 > 高中数学 > 题目详情
17.若变量x,y满足约束条件$\left\{\begin{array}{l}x≤1\\ x+y≥1\\ y-x≤1\end{array}\right.$,则z=x-2y的最大值为1.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.

解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{2}x-\frac{z}{2}$,
由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$,过点C(1,0)时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,此时z最大,
代入目标函数z=x-2y,得z=1
∴目标函数z=x-2y的最大值是1.
故答案为:1

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于点D,E是边AC上一点,BE与⊙O交于点F,连接DF.
(1)证明:C,D,F,E四点共圆;
(2)若EF=3,AE=5,求BD•BC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有下列程序:

若输入4,则其输出结果为(  )
A.4B.16C.4^2D.16^2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数i(i-1)的虚部为(  )
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设直线l1:(a-1)x-4y=1,l2:(a+1)x+3y=2,l3:x-2y=3.
(1)若直线l1的倾斜角为135°,求实数a的值;
(2)若l2∥l3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=(x-2)(x-5)-1有两个零点x1、x2,且x1<x2,则(  )
A.x1<2,2<x2<5B.x1>2,x2>5C.x1<2,x2>5D.2<x1<5,x2>5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-$\frac{x-b}{x}$,其中b为常数,且b>0.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直,求函数f(x)的单调递减区间;
(2)若函数f(x)在[1,3]上的最小值为$\frac{1}{3}$,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设集合A={1,2,3,4,5,6,7,8},B={4,7,8,9},求A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数f(x)=cos2x的图象向右平移$\frac{π}{4}$个单位后得到函数g(x),则g(x)具有性质(  )
A.最大值为1,图象关于直线$x=\frac{π}{2}$对称B.在$({-\frac{3π}{8},\frac{π}{8}})$上单调递增,为偶函数
C.周期为π,图象关于点$({\frac{3π}{8},0})$对称D.在$({0,\frac{π}{4}})$上单调递增,为奇函数

查看答案和解析>>

同步练习册答案