精英家教网 > 高中数学 > 题目详情
P为椭圆
x2
25
+
y2
16
=1上一点,M.N分别是圆(x+3)2+y2=4和(x-3)2+y2=1上的点,则|PM|+|PN|的取值范围是(  )
分析:由题设知椭圆
x2
25
+
y2
16
=1的焦点分别是两圆圆(x+3)2+y2=4和(x-3)2+y2=1的圆心,由此能求出|PM|+|PN|的最小值、最大值.
解答:解:依题意,椭圆
x2
25
+
y2
16
=1
的焦点分别是两圆(x+3)2+y2=4和(x-3)2+y2=1的圆心,
所以(|PM|+|PN|)max=2×5+3=13,
(|PM|+|PN|)min=2×5-3=7,
则|PM|+|PN|的取值范围是[7,13]
故选A
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆
x2
25
+
y2
9
=1的左、右焦点,P为椭圆上一点,Q是y轴上的一个动点,若|
PF1
|-|
PF2
|=4,则
PQ
•(
PF1
-
PF2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①过点P(2,1)的抛物线的标准方程是y2=
1
2
x

②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
③焦点在x轴上的双曲线C,若离心率为
5
,则双曲线C的一条渐近线方程为y=2x.
④椭圆
x2
m+1
+
y2
m
=1
的两个焦点为F1,F2,P为椭圆上的动点,△PF1F2的面积的最大值为2,则m的值为2.其中真命题的序号为
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点P为椭圆
x2
25
+
y2
9
=1
在第一象限内的任意一点,过椭圆的右顶点A和上顶点B分别作与y轴和x轴的平行线交于C,过P引BC、AC的平行线交AC于N,交BC于M,交AB于D、E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则S1:S2=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆
x2
25
+
y2
9
=1
的两个焦点,若点P在椭圆上,且满足PF1=3,Q是y轴上的一个动点,则
PQ
•(
PF1
-
PF2
)
=
-20
-20

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)已知:P为椭圆
x2
25
+
y2
9
=1
上的任意一点,过椭圆的右顶点A和上顶点B分别作与x轴和y 轴的平行线交于C,过P引BC、AC的平行线交AC于N,交BC于M,交AB于D、E,矩形PMCN是S1,三角形PDE的面积是S2,则S1:S2=(  )

查看答案和解析>>

同步练习册答案