精英家教网 > 高中数学 > 题目详情
在△ABC中,分别根据下列条件,判断三角形的形状.
(1)(B为锐角);
(2)sinA=2cosCsinB;
(3)A、B、C成等差数列,a,b,c成等比数列
(4)acosB+bcosC+ccosA=bcosA+ccosB+acosC;
(5)
(6)(a2+b2)sin(A-B)=(a2-b2)sin(A+B).
【答案】分析:(1)先由对数的运算性质化简,可得,从而可求B,再利用正弦定理代入可求A,C
(2)利用正弦、余弦定理化简可得
(3))∵A、B、C成等差数列,∴A+C=2B,从而可得A+C=,B=,由a、b、c成等比数列可得b2=ac,结合已知及正弦定理可求
(4)利用余弦定理可得由余弦定理可得
=
整理可得,从 而可得a=b=c
(5)先把已知整理可得,a2+b2-c2=ab,利用余弦定理可求C,及A+B,再由代入可求
(6))由(a2+b2)sin(A-B)=(a2-b2)sin(A+B)可得a2[sin(A-B)-sin(A+B)]+b2[sin(A-B)+sin(A+B)]=0
整理可得sin2A=sin2B,从而可得
解答:解:(1)∵lga-lgc=lgsinB=-lg

∵B为锐角,∴
由正弦定理可得,
整理可得cosC=0∴
∴△ABC为等腰直角三角形
(2)∵sinA=2cosCsinB
由正弦定理及余弦定理可得,a=b×
化简可得,b=c
所以△ABC为等腰三角形
(3)∵A、B、C成等差数列,∴A+C=2B,从而可得A+C=,B=
∵a、b、c成等比数列∴b2=ac
由正弦定理可得
∴sinA
整理可得,则B=C=
∴三角形△ABC为等边三角形
(4)∵acosB+bcosC+ccosA=bcosA+ccosB+acosC
由余弦定理可得
=
整理可得

整理可得
∴a=b或a=c或b=c
三角形△ABC为等腰三角形
(5)由已知可得,a3+b3-c3=ac2+bc2-c3
∴(a+b)(a2-ab+b2)=(a+b)c2
∴a2+b2-c2=ab
由余弦定理可得,∴

∴sinA
整理可得,则B=C=
三角形△ABC为等边三角形
(6)(a2+b2)sin(A-B)=(a2-b2)sin(A+B)
可得a2[sin(A-B)-sin(A+B)]+b2[sin(A-B)+sin(A+B)]=0
a2sinBcosA=b2sinAcosB
由正弦定理sin2AsinBcosA=sin2BsinAcosB
整理可得sin2A=sin2B,从而可得2A=2B或2A+2B=π

∴三角形△ABC为等腰三角形或直角三角形
点评:本题主要考查了利用正弦定理、余弦定理综合解三角形,判断三角形的形状,还考查了三角函数的公式,属于对基本知识的求解,但要体会在化简中的技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若A=60°,b、c分别是方程x2-7x+11=0的两个根,则a等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c(b≠1),且
sinB
sinA
C
A
都是方程log
b
x=logb(4x-4)
的根,求角A、B、C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:①命题“?α∈R,sin3α=sin2α”的否定是假命题;②在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=
2
A=
π
6
B=
π
4
;③设二次函数f(x)=x2+ax+a,则“0<a<3-2
2
”是“方程f(x)-x=0的两根x1和x2满足0<x1<x2<1”的充分必要条件.④过点(
1
2
,1)且与函数y=
1
x
的图象相切的直线方程是4x+y-3=0.其中所有正确说法的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边分别为a,b,c,若关于x的方程x2-2xsin
C
2
+sin2C=0
有等根
(1)求角C;
(2)若a2+2b2=c2,求
bsinA
c

查看答案和解析>>

同步练习册答案