分析 由函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上单调递减,可得$\left\{\begin{array}{l}-\frac{a}{2}≥1\\ a<0\\-\frac{1}{2a}≤1\end{array}\right.$,解得实数a的取值范围.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上单调递减,
∴$\left\{\begin{array}{l}-\frac{a}{2}≥1\\ a<0\\-\frac{1}{2a}≤1\end{array}\right.$,
解得a∈(-∞,-2],
故答案为:(-∞,-2]
点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {4} | B. | {1,2,4,5} | C. | {1,2,3,4,5} | D. | {a,1,2,3,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2$\sqrt{3}$,+∞) | B. | (-∞,2$\sqrt{3}$] | C. | (-∞,2$\sqrt{3}$]∪(2$\sqrt{3}$,+∞) | D. | [-2$\sqrt{3}$,2$\sqrt{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x+1 | B. | y=$\sqrt{x+1}$ | C. | y=($\frac{1}{2}$)x | D. | y=-$\frac{1}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com