精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上单调递减,在实数a的取值范围是(-∞,-2].

分析 由函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上单调递减,可得$\left\{\begin{array}{l}-\frac{a}{2}≥1\\ a<0\\-\frac{1}{2a}≤1\end{array}\right.$,解得实数a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上单调递减,
∴$\left\{\begin{array}{l}-\frac{a}{2}≥1\\ a<0\\-\frac{1}{2a}≤1\end{array}\right.$,
解得a∈(-∞,-2],
故答案为:(-∞,-2]

点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是定义在(-1,1)上的奇函数,
(1)若函数f(x)在区间(-1,0)上有最大值2,最小值-4,求函数f(x)在区间(0,1)上的最值;(直接写出结果,不需要证明)
(2)若函数f(x)在区间(0,1)上单调递增,试判断函数f(x)在区间(-1,0)上的单调性并加以证明;
(3)若当x∈(0,1)时,f(x)=x2-2x,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合 A={1,2,4},B={a,3,5},若 A∩B={4},则 A∪B=(  )
A.{4}B.{1,2,4,5}C.{1,2,3,4,5}D.{a,1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2sinx+$\frac{3\sqrt{3}}{π}$x+m,x∈[-$\frac{π}{3}$,$\frac{π}{3}$]有零点,则m的取值范围是(  )
A.[2$\sqrt{3}$,+∞)B.(-∞,2$\sqrt{3}$]C.(-∞,2$\sqrt{3}$]∪(2$\sqrt{3}$,+∞)D.[-2$\sqrt{3}$,2$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且满足Sn=(n+1)2-an-2(n∈N*).
(1)令bn+2=an+1-an,证明:{bn}为常数数列,并求出{an}的通项公式;
(2)是否存在m∈N*,使得等式am+am+1+am+2=am•am+1•am+2?若存在,求出对应的m;若不存在,请说明理由.
(3)若ar,as,at为数列{an}中的任意三项,证明:关于x的一元二次方程arx2+asx-at=0无有理数解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,在区间(0,+∞)上为减函数的是(  )
A.y=x+1B.y=$\sqrt{x+1}$C.y=($\frac{1}{2}$)xD.y=-$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{lnx+a{x}^{2}}{x}$(a是常数)在x=1处切线的斜率等于1.
(1)求函数f(x)的单调区间并比较f(2),f(3),f(4)的大小;
(2)若方程lnx=x3-2ex2+mx(e为自然对数的底数)有且只有一个实根,求实数m的取值;
(3)如果方程f(x)=lnx-kx有两个不同的零点x1,x2,求证x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,a=2,b=$\sqrt{2}$,A=45°,则B等于(  )
A.45°B.30°C.60°D.30°或150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆台上、下底面半径的比是1:4,母线长为9cm,母线与轴的夹角为30°,求圆台中截面(过高的中点且平行底面的截面)的面积.

查看答案和解析>>

同步练习册答案