精英家教网 > 高中数学 > 题目详情
4.在△ABC中,a=2,b=$\sqrt{2}$,A=45°,则B等于(  )
A.45°B.30°C.60°D.30°或150°

分析 利用正弦定理列出关系式,将a,b及cosA的值代入求出sinB的值,利用特殊角的三角函数值即可求出B的度数.

解答 解:∵A=45°,a=2,b=$\sqrt{2}$,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{2}}{2}}{2}$=$\frac{1}{2}$,
∵2>$\sqrt{2}$,即a>b,∴A>B,
则B=30°.
故选:B.

点评 此题考查了正弦定理,特殊角的三角函数值,以及三角形的边角关系,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某机床厂用98万元购进一台数控机床,第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,从第一年开始每年的收入均为50万元.设使用x年后数控机床的盈利总额为y万元.
(1)写出y与x之间的函数关系式;并求第几年开始,该机床开始盈利;
(2)问哪一年平均盈利额最大、最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上单调递减,在实数a的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设定义在(0,+∞)上的函数f(x)满足x2f′(x)+2xf(x)=1+lnx,f(1)=0,若关于x的方程f(x)=a有两个不等实数根,则实数a的取值范围为(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{alnx}{x}$在x=1处的切线经过点(0,-1).
(I)求f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,若不等式f(x)≤x2-x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:
(1)$\frac{1}{\sqrt{0.04}}$+($\frac{1}{\sqrt{27}}$)${\;}^{\frac{1}{3}}$+($\sqrt{2}$+1)-1-2${\;}^{\frac{1}{2}}$+(-2)0
(2)$\frac{2}{5}$lg32+lg50+$\sqrt{(lg3)^{2}-lg9+1}$-lg$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“x>2或x<0”是“$\frac{1}{x}<1$”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在四边形ABCD中,设$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{BC}=\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{c}$,则$\overrightarrow{CD}$等于(  )
A.$\overrightarrow{c}$-($\overrightarrow{a}$+$\overrightarrow{b}$)B.$\overrightarrow{b}$-($\overrightarrow{a}+\overrightarrow{c}$)C.$\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}$D.$\overrightarrow{a}-\overrightarrow{b}+\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}、{bn}满足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1{-a}_{n}^{2}}$.
(1)求证数列{$\frac{1}{{b}_{n}-1}$}是等差数列;
(2)若cn=$\frac{{a}_{n}{-a}_{n}^{2}}{{2}^{n}(1-2{a}_{n})(1-3{a}_{n})}$,求数列{cn}的前n项和Sn≥$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案