精英家教网 > 高中数学 > 题目详情
8.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,PA=BC=AC=4,D为PC的中点.
(1)求证:AD⊥平面PBC;
(2)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.

分析 (1)由PA⊥平面ABC,知PA⊥BC,由AC⊥BC,知BC⊥平面PAC,从而得到BC⊥AD.由此能够证明AD⊥平面PBC.
(2)取AB的中点O,连接CO并延长至Q,使得CQ=2CO,利用线面平行的判定可知点Q即为所求,证明ACBQ为平行四边形,即可求出PQ的长.

解答 (本小题满分12分)
解:(1)因为PA⊥平面ABC,所以PA⊥BC,
又AC⊥BC,所以BC⊥平面PAC,所以BC⊥AD.
由在△PAC中,PA=AC=4,D为PC中点,所以AD⊥PC,
所以AD⊥平面PBC.
(2)如图取AB的中点O,连接CO并延长至Q,使得CQ=2CO,点Q即为所求.   …(7分)
因为O为CQ中点,所以PQ∥OD,…(8分)
因为PQ?平面ABD,OD?平面ABD,所以PQ∥平面ABD…(10分)
连接AQ,BQ,四边形ACBQ的对角线互相平分,
所以ACBQ为平行四边形,所以AQ=4,…(11分)
又PA⊥平面ABC,所以在直角△PAQ中,PQ=$\sqrt{A{P}^{2}+A{Q}^{2}}$=4$\sqrt{2}$.   …(13 分)

点评 本题主要考查了线面垂直的判定,考查了线面平行,考查学生空间想象能力,推理论证能力,分析解决问题的能力,正确运用线面垂直的判定,线面平行的判定定理是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列|an}的前n项和为Sn,且满足Sn+an=$\frac{(n+1)(n+2)}{2}$,n∈N*
(Ⅰ)证明:{an-n}是等比数列;
(Ⅱ)设bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点F1,F2,梯形的顶点A,B在双曲线上且F1A=AB=F2B,F1F2∥AB,则双曲线的离心率的取值范围是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则使向量$\overrightarrow{a}$+k$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$的夹角是锐角的实数k的取值范围是($\frac{5-\sqrt{21}}{2}$,1)∪(1,$\frac{5+\sqrt{21}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=x2+ax+3-a,且f(x)在闭区间[-2,2]上恒取非负数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.抛物线x2=4y+8的焦点到顶点的距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3+x-2,g(x)=x3+x2+(1-a)x-1.
(1)若曲线y=f(x)在点P0处的切线l平行于直线4x-y-1=0,且点P0在第三象限,求点P0的坐标;
(2)若对任意的x∈R,都有g(x)>f(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.化简log2$\sqrt{2\sqrt{2\sqrt{2\sqrt{2}…\sqrt{2}}}}$(总共有2015个2)的结果为(  )
A.$\frac{2014}{2015}$B.$\frac{{2}^{2015}-1}{{2}^{2015}}$C.$\frac{{2}^{2014}-1}{{2}^{2014}}$D.$\frac{{2}^{2016}-1}{{2}^{2016}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点P(2,4)引圆(x-1)2+(y-1)2=1的切线,则切线方程为x=2或4x-3y+4=0.

查看答案和解析>>

同步练习册答案