精英家教网 > 高中数学 > 题目详情
16.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则使向量$\overrightarrow{a}$+k$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$的夹角是锐角的实数k的取值范围是($\frac{5-\sqrt{21}}{2}$,1)∪(1,$\frac{5+\sqrt{21}}{2}$).

分析 利用数量积大于零解出k的范围,去掉共线的特殊情况.

解答 解:$\overrightarrow{a}•\overrightarrow{b}$=2×4×cos120°=-4.
∴($\overrightarrow{a}$+k$\overrightarrow{b}$)•(k$\overrightarrow{a}$+$\overrightarrow{b}$)=k${\overrightarrow{a}}^{2}$+k${\overrightarrow{b}}^{2}$+(k2+1)$\overrightarrow{a}•\overrightarrow{b}$=-4k2+20k-4.
∵向量$\overrightarrow{a}$+k$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$的夹角是锐角,∴-4k2+20k-4>0.解得$\frac{5-\sqrt{21}}{2}$<k<$\frac{5+\sqrt{21}}{2}$.
若向量$\overrightarrow{a}$+k$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$方向相同,则$\frac{1}{k}=k>0$,则k=1.
k的取值范围是($\frac{5-\sqrt{21}}{2}$,1)∪(1,$\frac{5+\sqrt{21}}{2}$).
故答案为($\frac{5-\sqrt{21}}{2}$,1)∪(1,$\frac{5+\sqrt{21}}{2}$).

点评 本题考查了平面向量的数量积及夹角计算,要特别考虑共线的特殊情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.(1+2x+3x2)(x+$\frac{1}{x}$)5的展开式中x的系数为40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P为抛物线C:y2=4x上一点,记P到抛物线准线l的距离为d1,点P到圆(x+2)2+(y+4)2=4的距离为d2,则d1+d2的最小值是(  )
A.6B.1C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正方体ABCD-A1B1C1D1的棱长是a,用向量法证明AC⊥BD1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示,三棱锥P-ABC中,∠ABC为直角,PB⊥平面ABC,AB=BC=PB=1,M为PC的中点,N为AC中点,以{$\overrightarrow{BA}$,$\overrightarrow{BC}$,$\overrightarrow{BP}$}为基底,则$\overrightarrow{MN}$的坐标为$(\frac{1}{2},0,-\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=2x+1的值域为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,PA=BC=AC=4,D为PC的中点.
(1)求证:AD⊥平面PBC;
(2)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直角坐标系xOy中,锐角α的顶点是原点,始边与x轴非负半轴重合,终边交单位圆于点M(x1,y1),将角α的终边按逆时针方向旋转$\frac{π}{3}$,交单位圆于点M(x2,y2).记f(α)=y1+y2
(I)求函数f(α)的值域;
(Ⅱ)在△ABC中,角A,B,C所对的边是a,b,c.若f(C)=$\sqrt{3}$,c=7,sinA+sinB=$\frac{13\sqrt{3}}{14}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(1,2),则|$\overrightarrow{a}$|=(  )
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案