精英家教网 > 高中数学 > 题目详情
6.(1+2x+3x2)(x+$\frac{1}{x}$)5的展开式中x的系数为40.

分析 由题意可得展开式中含x的项为:1•${C}_{5}^{2}{x}^{3}(\frac{1}{x})^{2}$++3x2•${C}_{5}^{3}{x}^{2}(\frac{1}{x})^{3}$,计算可得x系数.

解答 解:由题意和二项式系数的特点可得:
(1+2x+3x2)(x+$\frac{1}{x}$)5的展开式中含x的项为:
1•${C}_{5}^{2}{x}^{3}(\frac{1}{x})^{2}$++3x2•${C}_{5}^{3}{x}^{2}(\frac{1}{x})^{3}$=40x,
故答案为:40.

点评 本题考查二项式系数的性质,涉及分类讨论的思想,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在公差不为0的等差数列{an}中,2a4-a92+2a14=0,数列{bn}是等比数列,且a9=b9,则b8b10=(  )
A.4B.16C.8D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y满足满足约束条件$\left\{\begin{array}{l}x+y≤10\;\\ x-y≤2\;\\ x≥3\end{array}\right.$,那么z=x2+y2的最大值为58.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若实数x,y满足$\left\{\begin{array}{l}{y≥2x-2}\\{y≥-x+1}\\{y≤x+1}\end{array}\right.$,则z=2x-y的最小值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设复数z满足$\frac{z-i}{z+1}=i$(i为虚数单位),则z2016=(  )
A.21008B.21008iC.-21008D.-21008i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=|x-a|+|x|.
(Ⅰ)若a=1,解不等式f(x)>2;
(Ⅱ)若存在x∈R,使得不等式f(x)$≤\frac{{t}^{2}+3}{t+1}$对任意t>-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列|an}的前n项和为Sn,且满足Sn+an=$\frac{(n+1)(n+2)}{2}$,n∈N*
(Ⅰ)证明:{an-n}是等比数列;
(Ⅱ)设bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)的图象与曲线y=x2-2x+3关于y轴对称,则f(x)=x2+2x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则使向量$\overrightarrow{a}$+k$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$的夹角是锐角的实数k的取值范围是($\frac{5-\sqrt{21}}{2}$,1)∪(1,$\frac{5+\sqrt{21}}{2}$).

查看答案和解析>>

同步练习册答案