分析 (I)利用递推关系可得2an-an-1=n+1,变形an-n=$\frac{1}{2}$[an-1-(n-1)],即可证明;
(II)利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 (I)证明:∵Sn+an=$\frac{(n+1)(n+2)}{2}$,n∈N*,
∴当n=1时,2a1=3,解得a1=$\frac{3}{2}$.
当n≥2时,Sn-1+an-1=$\frac{n(n+1)}{2}$,可得2an-an-1=n+1,
∴an-n=$\frac{1}{2}$[an-1-(n-1)],
∴{an-n}是等比数列,首项为$\frac{1}{2}$,公比为$\frac{1}{2}$.
(II)解:由(I)可得:an=n+$(\frac{1}{2})^{n}$,
∴bn=2nan=n•2n+1,
令数列{n•2n}的前n项和为An.
An=2+2•22+3•23+…+n•2n,
2An=22+2•23+…(n-1)•2n+n•2n+1,
∴-An=2+22+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-2,
∴An=(n-1)•2n+1+2,
∴数列{bn}的前n项和Tn=(n-1)•2n+1+2+n.
点评 本题考查了递推关系、“错位相减法”与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| x | $-\frac{π}{2}$ | 0 | $\frac{π}{6}$ | $\frac{π}{2}$ |
| f(x) | -1 | 1 | $\frac{1}{2}$ | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | … | -2 | -1 | 0 | 1 | 2 | … |
| y | … | -11 | -2 | 1 | -2 | -5 | … |
| A. | -11 | B. | -2 | C. | 1 | D. | -5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 1 | C. | 5 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com