精英家教网 > 高中数学 > 题目详情

如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.

(1)求证:MA⊥MB;
(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.

(1)见解析(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知⊙O:x2+y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且
(1)求点N的轨迹C的方程;
(2)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是
(1)求双曲线C的方程;
(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M, N,且线段MA的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线Cy2=2px(p>0)的焦点为F,抛物线C与直线l1y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2l1垂直,且与抛物线交于不同的两点AB,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆过定点(1,0),且与直线相切.
(1)求动圆圆心的轨迹方程;
(2)设是轨迹上异于原点的两个不同点,直线的倾斜角分别为,①当时,求证直线恒过一定点
②若为定值,直线是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点, 的周长为8,且面积最大时,为正三角形.

(1)求椭圆的方程;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,证明:点在以为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线与圆相切,且交椭圆两点,c是椭圆的半焦距,.
(1)求m的值;
(2)O为坐标原点,若,求椭圆的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点,直线与直线分别交于M,N两点,求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(a>b>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.

查看答案和解析>>

同步练习册答案