精英家教网 > 高中数学 > 题目详情

已知圆,直线与圆相切,且交椭圆两点,c是椭圆的半焦距,.
(1)求m的值;
(2)O为坐标原点,若,求椭圆的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点,直线与直线分别交于M,N两点,求线段MN的长度的最小值.

(1);(2);(3).

解析试题分析:本题主要考查圆的标准方程、椭圆的标准方程、直线的标准方程、直线与圆的位置关系、直线与椭圆的位置关系等基础知识,考查数形结合思想,考查转化能力和计算能力.第一问,利用直线与圆相切,利用圆心到直线的距离为半径,列出等式,求出;第二问,直线与椭圆相交,两方程联立,消参,得到关于的方程,利用两根之和,两根之积和向量的数量积联立,得到,从而求出椭圆的方程;第三问,设直线的斜率,设出直线的方程,直线与椭圆联立,消参,利用两根之积,得到的值,则可以用表示坐标,利用点坐标,求出直线的方程,直线的方程与直线联立,求出点坐标,利用两点间距离公式,得到的表达式,利用均值定理求出最小值.
试题解析:(1)直线与圆相切,
所以                                 4分
(2) 将代入得
得:


因为           ②
由已知代人(2)
所以椭圆的方程为                                        8分
(Ⅲ)显然直线AS的斜率存在,设为
依题意,由得:

,又B(2,0)所以  BS:
 
所以时:                                          12分
考点:1.点到直线的距离;2.向量的数量积;3.韦达定理;4.均值定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

椭圆C1:+=1(a>b>0)的左、右顶点分别为A,B,点P是双曲线C2:-=1在第一象限内的图象上一点,直线AP,BP与椭圆C1分别交于C,D点,若S△ACD=S△PCD.

(1)求P点的坐标.
(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.

(1)求证:MA⊥MB;
(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆与双曲线x2-y2=0有相同的焦点,且离心率为.
(1)求椭圆的标准方程;
(2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若=2,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于4.

(1)求椭圆和圆的标准方程;
(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C=1(a>b>0)的离心率为,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线xy+2=0相切.

(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2),设MN是椭圆C上关于y轴对称的不同两点,直线PMQN相交于点T.求证:点T在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的焦点分别为,长轴长为6,设直线交椭圆C于A、B两点,求线段AB的中点坐标

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设椭圆的离心率,顶点的距离为,为坐标原点.

(1)求椭圆的方程;
(2)过点作两条互相垂直的射线,与椭圆分别交于两点.
(ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.圆的方程是
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;
(3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:

查看答案和解析>>

同步练习册答案