已知椭圆与双曲线x2-y2=0有相同的焦点,且离心率为
.
(1)求椭圆的标准方程;
(2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若
=2
,求△AOB的面积.
科目:高中数学 来源: 题型:解答题
已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N.
(1)求抛物线方程及其焦点坐标;
(2)已知O为原点,求证:∠MON为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是![]()
(1)求双曲线C的方程;
(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M, N,且线段MA的垂直平分线与两坐标轴围成的三角形的面积为
,求k的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动圆
过定点(1,0),且与直线
相切.
(1)求动圆圆心
的轨迹方程;
(2)设
是轨迹
上异于原点
的两个不同点,直线
和
的倾斜角分别为
和
,①当
时,求证直线
恒过一定点
;
②若
为定值
,直线
是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的左焦点为
,右焦点为
,过
的直线交椭圆于
两点,
的周长为8,且
面积最大时,
为正三角形.![]()
(1)求椭圆
的方程;
(2)设动直线
与椭圆
有且只有一个公共点
,且与直线
相交于点
,证明:点
在以
为直径的圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直角坐标系中,已知△PAB的周长为8,且点A,B的坐标分别为(-1,0),(1,0).![]()
(1)试求顶点P的轨迹C1的方程;
(2)若动点C(x1,y1)在轨迹C1上,试求动点Q
的轨迹C2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
,直线
与圆
相切,且交椭圆
于
两点,c是椭圆的半焦距,
.
(1)求m的值;
(2)O为坐标原点,若
,求椭圆
的方程;
(3)在(2)的条件下,设椭圆
的左右顶点分别为A,B,动点
,直线
与直线
分别交于M,N两点,求线段MN的长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设直线l:x-y+m=0与抛物线C:y2=4x交于不同两点A,B,F为抛物线的焦点.
(1)求△ABF的重心G的轨迹方程;
(2)如果m=-2,求△ABF的外接圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com