精英家教网 > 高中数学 > 题目详情

如图,在直角坐标系中,已知△PAB的周长为8,且点A,B的坐标分别为(-1,0),(1,0).

(1)试求顶点P的轨迹C1的方程;
(2)若动点C(x1,y1)在轨迹C1上,试求动点Q的轨迹C2的方程.

(1)=1   (2) x2+y2=1

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,F1F2分别是椭圆C=1(ab>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.

(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线ly轴上的截距为m,直线l与椭圆相交于AB两个不同点.

(1)求实数m的取值范围;
(2)证明:直线MAMBx轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,在第一和第四象限的交点分别为.
(1)若△AOB是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率
(3)点为椭圆上的任一点,若直线分别与轴交于点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆与双曲线x2-y2=0有相同的焦点,且离心率为.
(1)求椭圆的标准方程;
(2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若=2,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设 .
(1)证明: 成等比数列;
(2)若的坐标为,求椭圆的方程;
(3)在(2)的椭圆中,过的直线与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C=1(a>b>0)的离心率为,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线xy+2=0相切.

(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2),设MN是椭圆C上关于y轴对称的不同两点,直线PMQN相交于点T.求证:点T在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,过点A(-2,-1)椭圆C=1(ab>0)的左焦点为F,短轴端点为B1B2=2b2.
(1)求ab的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ·AR=3OP2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线与椭圆C交于不同两点.
(1)求椭圆C的方程;
(2)设直线斜率为1,求线段的长;
(3)设线段的垂直平分线交轴于点P(0,y0),求的取值范围.

查看答案和解析>>

同步练习册答案