在平面直角坐标系xOy中,过点A(-2,-1)椭圆C∶=1(a>b>0)的左焦点为F,短轴端点为B1、B2,=2b2.
(1)求a、b的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ·AR=3OP2,求直线l的方程.
科目:高中数学 来源: 题型:解答题
已知的三个顶点都在抛物线上,且抛物线的焦点满足,若边上的中线所在直线的方程为(为常数且).
(1)求的值;
(2)为抛物线的顶点,,,的面积分别记为,,,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直角坐标系中,已知△PAB的周长为8,且点A,B的坐标分别为(-1,0),(1,0).
(1)试求顶点P的轨迹C1的方程;
(2)若动点C(x1,y1)在轨迹C1上,试求动点Q的轨迹C2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一条曲线在轴右侧,上每一点到点的距离减去它到轴距离的差都是1.
(1)求曲线的方程;
(2)设直线交曲线于两点,线段的中点为,求直线的一般式方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l:x=2.
(1)求椭圆的标准方程;
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程.
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,动点满足:点到定点与到轴的距离之差为.记动点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过点的直线交曲线于、两点,过点和原点的直线交直线于点,求证:直线平行于轴.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com