精英家教网 > 高中数学 > 题目详情

已知的三个顶点都在抛物线上,且抛物线的焦点满足,若边上的中线所在直线的方程为为常数且).
(1)求的值;
(2)为抛物线的顶点,的面积分别记为,求证:为定值.

(1);(2)详见试题解析.

解析试题分析:(1)由已知,抛物线的焦点满足,从而知BC边上的中点符合,因此点在直线上,令,可得抛物线的焦点的坐标,由此可求得的值;(2)首先设出的坐标:,由已知,即可得,而,最终即可证得为定值.
试题解析:(1)因为抛物线的焦点满足,取BC边上的中点,则,故点在直线上,令,得,得抛物线的焦点,于是,.                                    5分
(2)记,由知:,     7分
.于是,
.证毕.                                13分
考点:1.抛物线的标准方程及其简单几何性质;2.直线与抛物线的位置关系;3.解析几何中定值问题的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线-=1(b∈N*)的左、右两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1||PF2|=|F1F2|2,|PF2|<4.
(1)求b的值;
(2)抛物线y2=2px(p>0)的焦点与该双曲线的右顶点重合,斜率为1的直线经过右顶点,与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F1F2分别是椭圆C=1(ab>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.

(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面直角坐标系xoy中,动点满足:点P到定点与到y轴的距离之差为.记动点P的轨迹为曲线C.
(1)求曲线C的轨迹方程;
(2)过点F的直线交曲线C于A、B两点,过点A和原点O的直线交直线于点D,求证:直线DB平行于x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:+=1(a>b>0).
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程.
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)过原点O任意作两条互相垂直的直线与椭圆+=1(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.
(1)求椭圆C的方程;
(2)AB为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设t,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线ly轴上的截距为m,直线l与椭圆相交于AB两个不同点.

(1)求实数m的取值范围;
(2)证明:直线MAMBx轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,在第一和第四象限的交点分别为.
(1)若△AOB是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率
(3)点为椭圆上的任一点,若直线分别与轴交于点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,过点A(-2,-1)椭圆C=1(ab>0)的左焦点为F,短轴端点为B1B2=2b2.
(1)求ab的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ·AR=3OP2,求直线l的方程.

查看答案和解析>>

同步练习册答案