精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.
(1)求椭圆C的方程;
(2)AB为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设t,求实数t的值.

(1)y2=1(2)t=2或t

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆+=1(a>b>0),点P(a,a)在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设点P是圆x2y2=4上任意一点,由点Px轴作垂线PP0,垂足为P0,且.
(1)求点M的轨迹C的方程;
(2)设直线lykxm(m≠0)与(1)中的轨迹C交于不同的两点AB.
若直线OAABOB的斜率成等比数列,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,右焦点到直线的距离为
(1)求椭圆的方程;
(2)过椭圆右焦点F2斜率为)的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的三个顶点都在抛物线上,且抛物线的焦点满足,若边上的中线所在直线的方程为为常数且).
(1)求的值;
(2)为抛物线的顶点,的面积分别记为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线,抛物线,已知点在抛物线上,且抛物线上的点到直线的距离的最小值为

(1)求直线及抛物线的方程;
(2)过点的任一直线(不经过点)与抛物线交于两点,直线与直线相交于点,记直线的斜率分别为.问:是否存在实数,使得?若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t (O为坐标原点),当||<时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点.
(1)求该椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得关于直线对称,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一条曲线轴右侧,上每一点到点的距离减去它到轴距离的差都是1.
(1)求曲线的方程;
(2)设直线交曲线两点,线段的中点为,求直线的一般式方程.

查看答案和解析>>

同步练习册答案