精英家教网 > 高中数学 > 题目详情

已知椭圆C:+=1(a>b>0).
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程.
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)过原点O任意作两条互相垂直的直线与椭圆+=1(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件.

(1) +y2=1  (2) k∈(-2,-)∪(,2)  (3) +=1

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.

(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N.
(1)求抛物线方程及其焦点坐标;
(2)已知O为原点,求证:∠MON为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.
(1)求圆C的圆心轨迹L的方程.
(2)求满足条件m=n的点M的轨迹Q的方程.
(3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知⊙O:x2+y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且
(1)求点N的轨迹C的方程;
(2)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的三个顶点都在抛物线上,且抛物线的焦点满足,若边上的中线所在直线的方程为为常数且).
(1)求的值;
(2)为抛物线的顶点,的面积分别记为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是
(1)求双曲线C的方程;
(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M, N,且线段MA的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆过定点(1,0),且与直线相切.
(1)求动圆圆心的轨迹方程;
(2)设是轨迹上异于原点的两个不同点,直线的倾斜角分别为,①当时,求证直线恒过一定点
②若为定值,直线是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题:方程表示的曲线是焦点在y轴上的双曲线,命题:方程无实根,若为真,为真,求实数的取值范围.

查看答案和解析>>

同步练习册答案