如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.![]()
(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.
科目:高中数学 来源: 题型:解答题
设定圆
,动圆
过点
且与圆
相切,记动圆
圆心
的轨迹为
.
(1)求轨迹
的方程;
(2)已知
,过定点
的动直线
交轨迹
于
、
两点,
的外心为
.若直线
的斜率为
,直线
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的左、右焦点坐标分别是(-
,0),(
,0),离心率是
.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(1)求椭圆C的方程;
(2)若圆P与x轴相切,求圆心P的坐标;
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆E:
+
=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3.
(1)求椭圆E的方程;
(2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
-
=1(b∈N*)的左、右两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1||PF2|=|F1F2|2,|PF2|<4.
(1)求b的值;
(2)抛物线y2=2px(p>0)的焦点与该双曲线的右顶点重合,斜率为1的直线经过右顶点,与该抛物线交于A、B两点,求弦长|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过椭圆
的左顶点
作斜率为2的直线,与椭圆的另一个交点为
,与
轴的交点为
,已知
.
(1)求椭圆的离心率;
(2)设动直线
与椭圆有且只有一个公共点
,且与直线
相交于点
,若
轴上存在一定点
,使得
,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1(a>b>0).
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程.
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)过原点O任意作两条互相垂直的直线与椭圆
+
=1(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com