精英家教网 > 高中数学 > 题目详情
(2012•普陀区一模)如图,已知圆锥体SO的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.
(1)求圆锥体的体积;
(2)异面直线SO与PA所成角的大小(结果用反三角函数表示).
分析:(1)根据圆锥侧面积公式,结合题中数据列式,可得圆锥的母线长,再用勾股定理算出高的长度,最后用圆锥体积公式可得该圆锥的体积.
(2)取OB中点H,连接PH、AH,在△POB中,利用中位线定理,得到PH∥SO,故∠APH(或其补角)即为直线SO与PA所成角.在Rt△AOH中,计算出AH的长,最后在Rt△PAH中,利用正切的定义,得到异面直线SO与PA所成角的大小为arctan
3
5
4
解答:解:(1)∵圆锥体SO的侧面积为15π,底面半径OA=3,
∴π•OA•SB=15π,得SB=5
Rt△SOB中,SO=
SB2-OB2
=4,即圆锥的高为4
圆锥体的体积为V=
1
3
π×32×4=12π
(2)取OB中点H,连接PH、AH
∵△POB中,PH为中位线
∴PH∥SO,PH=
1
2
SO=2
故∠APH(或其补角)即为直线SO与PA所成角
∵SO⊥平面AOB,PH∥SO,
∴PH⊥平面AOB,可得PH⊥AH
∵△AOH中,AO⊥BO,HO=
1
2
BO=
3
2

∴AH=
AO2+HO2
=
3
5
2

∴Rt△PAH中,tan∠APH=
AH
PH
=
3
5
4
,得∠APH=arctan
3
5
4
(锐角),
因此,异面直线SO与PA所成角的大小为arctan
3
5
4
点评:本题给出圆锥一条母线的中点与底面圆上一点的连线,要我们求它与高线所成的角,着重考查了空间平行垂直的位置关系和异面直线所成角的求法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•普陀区一模)
e
1
e
2
是两个不共线的向量,已知
AB
=2
e
1
+k
e
2
CB
=
e
1
+3
e
2
CD
=2
e
1
-
e
2
,且A,B,D三点共线,则实数k=
-8
-8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)设全集为R,集M={x|
x2
4
+y2=1
},N={x|
x-3
x+1
≤0
},则集合{x|(x+
3
2
)
2
+y2=
1
4
}可表示为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)已知数列{an}是首项为2的等比数列,且满足an+1=pan+2n(n∈N*)
(1)求常数p的值和数列{an}的通项公式;
(2)若抽去数列中的第一项、第四项、第七项、…第3n-2项,…,余下的项按原来的顺序组成一个新的数列{bn},试写出数列
{bn}的通项公式;
(3)在(2)的条件下,设数列{bn}的前n项和为Tn,是否存在正整数n,使得
Tn+1
Tn
=
11
3
?若存在,试求所有满足条件的正整数n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)对于平面α、β、γ和直线a、b、m、n,下列命题中真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)函数y=
1
log
1
2
|x-1|
的定义域是
(0,1)∪(1,2)
(0,1)∪(1,2)

查看答案和解析>>

同步练习册答案