【题目】已知函数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)若函数在区间上单调递增,求实数的取值范围;
(Ⅲ)设函数,其中.证明:的图象在图象的下方.
【答案】(1) .
(2) .
(3)证明见解析.
【解析】分析:(Ⅰ)求出函数的导数,计算和的值,点斜式求出切线方程即可.
(Ⅱ)设,并求导.将问题转化为在区间上,恒成立,或者恒成立,通过特殊值,且,确定恒成立,通过参数分离,求得实数的取值范围;
(Ⅲ)设,将问题转化为证明,利用函数的导数确定函数最小值在区间,并证明. 即的图象在图象的下方.
详解:解:(Ⅰ)求导,得,
又因为
所以曲线在点处的切线方程为
(Ⅱ)设函数,
求导,得,
因为函数在区间上为单调函数,
所以在区间上,恒成立,或者恒成立,
又因为,且,
所以在区间,只能是恒成立,即恒成立.
又因为函数在在区间上单调递减,,
所以.
(Ⅲ)证明:设.
求导,得.
设,则(其中).
所以当时,(即)为增函数.
又因为,
所以,存在唯一的,使得
且与在区间上的情况如下:
- | 0 | + | |
↘ | ↗ |
所以,函数在上单调递减,在上单调递增,
所以 .
又因为,,
所以,
所以,即的图象在图象的下方.
科目:高中数学 来源: 题型:
【题目】设二次函数f(x)=ax2+bx.
(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;
(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知六棱锥的底面是正六边形,平面,,给出下列结论:
①;
②直线平面;
③平面平面;
④异面直线与所成角为;
⑤直线与平面所成角的余弦值为.
其中正确的有_______(把所有正确的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某个产品有若千零部件构成,加工时需要经过6道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系.若加工工序必须要在工序完成后才能开工,则称为的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:
工序 | ||||||
加工时间 | 3 | 4 | 2 | 2 | 2 | 1 |
紧前工序 | 无 | 无 |
现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是__________小时.(假定每道工序只能安排在一台机器上,且不能间断).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,.
(I)求证:平面ABCD;
(II)求证:平面ACF⊥平面BDF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.
(Ⅰ)求圆的标准方程;
(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为
A. 分B. 分C. 分D. 分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.
(1)若点的坐标为,求椭圆的方程及的值;
(2)若,求椭圆的离心率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com