【题目】如图,已知六棱锥
的底面是正六边形,
平面
,
,给出下列结论:
![]()
①
;
②直线
平面
;
③平面
平面
;
④异面直线
与
所成角为
;
⑤直线
与平面
所成角的余弦值为
.
其中正确的有_______(把所有正确的序号都填上)
科目:高中数学 来源: 题型:
【题目】已知某中学高三学生共有800人参加了数学与英语水平测试,现学校决定利用随机数表法从中抽取100人的成绩进行统计,先将800人按001,002,…,800进行编号.
如果从第8行第7列的数开始从左向右读,(下面是随机数表的第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 26
83 92 53 16 59 16 92 75 35 62 98 21 50 71 75 12 86 73 63 01
58 07 44 39 13 26 33 21 13 42 78 64 16 07 82 52 07 44 38 15
则最先抽取的2个人的编号依次为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
,点
是直线
:
上的一动点,过点
作圆M的切线
、
,切点为
、
.
(Ⅰ)当切线PA的长度为
时,求点
的坐标;
(Ⅱ)若
的外接圆为圆
,试问:当
运动时,圆
是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;
(Ⅲ)求线段
长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在奥运知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率是
,甲、乙两人都回答错误的概率是
,乙、丙两人都回答正确的概率是
.设每人回答问题正确与否相互独立的.
(Ⅰ)求乙答对这道题的概率;
(Ⅱ)求甲、乙、丙三人中,至少有一人答对这道题的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为
,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0 , y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF||BF|的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com