精英家教网 > 高中数学 > 题目详情

【题目】已知圆,点是直线上的一动点,过点作圆M的切线,切点为

)当切线PA的长度为时,求点的坐标;

)若的外接圆为圆,试问:当运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;

)求线段长度的最小值.

【答案】;(;(AB有最小值

【解析】

试题()求点的坐标,需列出两个独立条件,根据解方程组解:由点是直线上的一动点,得,由切线PA的长度为,解得)设P2b,b),先确定圆的方程:因为∠MAP90°,所以经过APM三点的圆MP为直径,其方程为:,再按b整理:解得,所以圆过定点)先确定直线方程,这可利用两圆公共弦性质解得:由圆方程为 ,相减消去x,y平方项得圆方程与圆相交弦AB所在直线方程为:,相交弦长即:

,当时,AB有最小值

试题解析:()由题可知,圆M的半径r2,设P2b,b),

因为PA是圆M的一条切线,所以∠MAP90°,

所以MP,解得

所以4

)设P2bb),因为∠MAP90°,所以经过APM三点的圆MP为直径,

其方程为:

7

解得,所以圆过定点9

)因为圆方程为

,即

得圆方程与圆相交弦AB所在直线方程为:

11

M到直线AB的距离13

相交弦长即:

时,AB有最小值16

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了更好地服务民众,某共享单车公司通过向共享单车用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得1元奖券、获得2元奖券的概率分别是0.5、0.2,且各次获取骑行券的结果相互独立.

(I)求用户骑行一次获得0元奖券的概率;

(II)若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列。

1)求数列的通项公式;

2)设,求数列的最大项的值与最小项的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是平行四边形,平面平面的中点.

1)求证:平面

2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5 ,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中,,且,其中分别是线段的中点。

1)证明:平面

2)证明:平面

3)求:直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数f(x)ax2bx.

(1)1≤f(1)≤2,2≤f(1)≤4,求f(2)的取值范围;

(2)b1时,若对任意x[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知六棱锥的底面是正六边形,平面,给出下列结论:

②直线平面

③平面平面

④异面直线所成角为

⑤直线与平面所成角的余弦值为.

其中正确的有_______(把所有正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为  

A. B. C. D.

查看答案和解析>>

同步练习册答案