精英家教网 > 高中数学 > 题目详情

【题目】设函数(其中).

(1)当时,求函数的单调区间;

(2)当时,讨论函数的零点个数.

【答案】(1)时,的单调递减区间是,单调递增区间是, 当时, 上单调递增,在上单调递减,

(2)1个.

【解析】试题分析:(1)第(1)问,先求导,对k分类讨论求出函数的单调区间.(2)第(2)问,对k分类讨论,讨论每一种情况下函数的零点个数,最后综合得到函数的零点个数情况.

试题解析:

(I)函数的定义域为

时,令,解得,所以的单调递减区间是

单调递增区间是

②当时,令,解得

所以上单调递增,在上单调递减,

(II),①当时,,又上单调递增,所以函数上只有一个零点,在区间中,因为,取,于是,又上单调递减,故上也只有一个零点,

所以,函数在定义域上有两个零点;

②当时,在单调递增区间内,只有

而在区间,即在此区间内无零点.

所以,函数在定义域上只有唯一的零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为的调查样本,其中城镇户籍与农村户籍各人;男性人,女性人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )

A. 是否倾向选择生育二胎与户籍有关

B. 是否倾向选择生育二胎与性别有关

C. 倾向选择生育二胎的人员中,男性人数与女性人数相同

D. 倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率

(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;

(Ⅱ)求甲恰好比乙多击中目标次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市为调查会员某年度上半年的消费情况制作了有奖调查问卷发放给所有会员,并从参与调查的会员中随机抽取名了解情况并给予物质奖励.调查发现抽取的名会员消费金额(单位:万元)都在区间内,调查结果按消费金额分成组,制作成如下的频率分布直方图.

(1)求该名会员上半年消费金额的平均值与中位数;(以各区间的中点值代表该区间的均值)

(2)若再从这名会员中选出一名会员参加幸运大抽奖,幸运大抽奖方案如下:会员最多有两次抽奖机会,每次抽奖的中奖概率均为,第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛掷一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:抛出的硬币,若反面朝上,则会员获得元奖金,不进行第二次抽奖;若正面朝上,会员需进行第二次抽奖,且在第二次抽奖中,如果中奖,则获得奖金元,如果未中奖,则所获得的奖金为元.若参加幸运大抽奖的会员所获奖金(单位:元)用表示,求的分布列与期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台在互联网上征集电视节目的现场参与观众,报名的共有12000人,分别来自4个地区,其中甲地区2400人,乙地区4605人,丙地区3795人,丁地区1200人,主办方计划从中抽取60人参加现场节目,请设计一套抽样方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,离心率.左焦点为,过点且与轴垂直的直线被椭圆截得的线段长为3.

(1)求该椭圆的方程;

(2)过椭圆的左焦点的任意一条直线与椭圆交于两点,在轴上是否存在定点使得轴平分,若存在,求出定点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的所有棱长都为中点.

(1)求证:⊥平面

(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图椭圆的离心率为 其左顶点在圆.

1)求椭圆的方程;

2)直线与椭圆的另一个交点为,与圆的另一个交点为.是否存在直线,使得若存在,求出直线的斜率;若不存在,说明理由.

查看答案和解析>>

同步练习册答案