精英家教网 > 高中数学 > 题目详情

【题目】给出以下结论,其中正确结论的个数为( )

①函数的零点为,则函数的图象经过点时,函数值一定变号.

②相邻两个零点之间的所有函数值保持同号.

③函数在区间上连续,若满足,则方程在区间上一定有实根.

④“二分法”对连续不断的函数的所有零点都有效.

A. 0个B. 1个C. 2个D. 3个

【答案】B

【解析】

根据函数的零点是函数图象与轴交点的横坐标,来判定①②是否正确;根据函数的零点存在定理,即函数在区间上连续,若满足,则函数上存在零点,来判断③④是否正确.

对于①,当函数的零点为不变号零点时,则函数的图象经过点时,函数值不变号,所以①不正确.

对于②,当函数的图象不连续(即图象断开),且在相邻的两个零点之间断开时,则在这两个零点间的函数值不一定同号,如正切函数,所以②不正确.

对于③,由零点存在定理可得正确.

对于④,由于“二分法”是针对连续不断的函数的变号零点而言的,所以④不正确.

综上可得只有③正确.

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某海滨浴场海浪的高度(米)是时间的(,单位:小时)函数,记作,下表是某日各时的浪高数据:

(时)

0

3

6

9

12

15

18

21

24

(米)

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

经长期观察,的曲线,可以近似地看成函数的图象.

(1)根据以上数据,求出函数近似表达式;

(2)依据规定,当海浪高度高于米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午时至晚上时之间,有多少时间可供冲浪者进行运动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为6的等边三角形各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正三棱柱形的容器.

(1)若这个容器的底面边长为,容积为,写出关于的函数关系式并注明定义域;

(2)求这个容器容积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区内有一块以为圆心半径为20米的圆形区域.广场,为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点分别在圆周上;观众席为梯形内且在圆外的区域,其中,且在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过60米.设.

(1)求的长(用表示);

(2)对于任意,上述设计方案是否均能符合要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50各学生进行调查,得到如下2×2列联表:(单位:人).

报考“经济类”

不报“经济类”

合计

6

24

30

14

6

20

合计

20

30

50

(Ⅰ)据此样本,能否有99%的把握认为理科生报考“经济类”专业与性别有关?
(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布及数学期望.
附:参考数据:

P(X2≥k)

0.05

0.010

k

3.841

6.635

(参考公式:X2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|﹣ x,(a>0). (Ⅰ)若a=3,解关于x的不等式f(x)<0;
(Ⅱ)若对于任意的实数x,不等式f(x)﹣f(x+a)<a2+ 恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数在点(1,0)处的切线方程;

(II)设实数k使得f(x)< kx恒成立,求k的范围;

(III)设函数,求函数h(x)在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形ABCD满足AD∥BC,BA=AD=DC=BC=a,E是BC的中点,将△BAE沿AE折起到△B1AE的位置,使平面B1AE⊥平面AECD,F为B1D的中点.
(1)证明:B1E∥平面ACF;
(2)求平面ADB1与平面ECB1所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案