精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
(
1
2
)x (x≥2)
f(x+1)  (x<2)
,则f(log23)=(  )
分析:先判定log23的取值范围,然后代入分段函数化简得f(log23)=f(log23+1),再判定log23+1的范围,代入解析式,利用指对数运算性质进行求解即可.
解答:解:∵2=log24>log23>log22=1
∴f(log23)=f(log23+1),而log23+1>2,
∴f(log23)=f(log23+1)=(
1
2
)
log23+1
=
1
2
(
1
2
)
log23
=
1
2
×
1
3
=
1
6

故选:B.
点评:此题重点考查递推关系下的函数求值;对数函数的运算性质,此类题的解决方法一般是由里及外逐步求解,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案