精英家教网 > 高中数学 > 题目详情
6.将$\sqrt{a}•\root{3}{a}$化成分数指数幂为(  )
A.${a^{\frac{1}{6}}}$B.${a^{\frac{5}{6}}}$C.${a^{\frac{7}{6}}}$D.${a^{\frac{2}{3}}}$

分析 先把根式化成指数式,再利用分数指数幂的性质和运算法则求解.

解答 解:$\sqrt{a}•\root{3}{a}$=${a}^{\frac{1}{2}}•{a}^{\frac{1}{3}}$=${a}^{\frac{1}{2}+\frac{1}{3}}$=a${\;}^{\frac{5}{6}}$,
故选:B

点评 本题考查根式与分数指数幂的互化,是基础题,解题时要认真审题,注意分数指数幂的性质和运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数$f(x)=x+2cosx,x∈[{0,\frac{π}{2}}]$的最大值为$\frac{π}{6}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x-2|-|x-5|.
(Ⅰ)求函数f(x)的值域;
(Ⅱ)不等式f(x)+2m-1≥0对于任意的x∈R都成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}中,a1=-1,d=4,则它的通项公式是(  )
A.an=-4n+3B.an=-4n-3C.an=4n-5D.an=4n+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的通项公式an=3n+1,求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为10,点P(2,1)在其渐近线上,则该双曲线的方程为(  )
A.$\frac{x^2}{80}-\frac{y^2}{20}=1$B.$\frac{x^2}{20}-\frac{y^2}{80}=1$C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.抛物线C:y2=2px(p>0)的焦点为F,A为C上的一点,已知|AF|=3,直线OA的斜率为$\sqrt{2}$(O为坐标原点).
(1)求抛物线C的方程;
(2)过焦点F作两条互相垂直的直线l1、l2,设l1与C交于B、D两点,l2与C交于C、E两点,求四边形BCDE面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$\overrightarrow a,\overrightarrow b,\overrightarrow c$为非零向量且相互不共线,下面四个命题:其中正确的是(  )
$(1)({\overrightarrow a•\overrightarrow b})•\overrightarrow c-({\overrightarrow a•\overrightarrow c})•\overrightarrow b=0$;            
$(2)|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
$(3)({\overrightarrow b•\overrightarrow c})•\overrightarrow a-({\overrightarrow a•\overrightarrow c})•\overrightarrow b不与\overrightarrow c垂直$;    
 $(4)({3\overrightarrow a+2\overrightarrow b})•({3\overrightarrow a-2\overrightarrow b})=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$y=\frac{lnx}{x}$的单调增区间是(  )
A.(0,e)B.(-∞,e)C.(e-1,+∞)D.(e,+∞)

查看答案和解析>>

同步练习册答案