精英家教网 > 高中数学 > 题目详情
14.已知等差数列{an}中,a1=-1,d=4,则它的通项公式是(  )
A.an=-4n+3B.an=-4n-3C.an=4n-5D.an=4n+3

分析 利用等差数列的通项公式即可得出.

解答 解:an=-1+4(n-1)=4n-5.
故选:C.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设集合A={x|1≤x≤2},B={x|x≤a},若A⊆B,则a的取值范围是(  )
A.{a|a≥2}B.{a|a>2}C.{a|a≥1}D.{a|a≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是(  )
A.x2=-$\frac{9}{2}$y或y2=$\frac{4}{3}$xB.x2=$\frac{4}{3}$y
C.x2=$\frac{4}{3}$y 或 y2=-$\frac{9}{2}$xD.y2=-$\frac{9}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{x^2}{2}+{y^2}=1$两个焦点分别是F1,F2,点P是椭圆上任意一点,则$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范围是(  )
A.[-1,1]B.[-1,0]C.[0,1]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.从2名女生和5名男生中任选3人参加演讲比赛.设随机变量ξ表示所选3人中女生的人数.
(1)求“所选3人中女生人数ξ≤1”的概率;
(2)求ξ的分布列;
(3)求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:
12131415101613111511
111617141319681016
哪种小麦长得比较整齐?
(参考公式:平均数:$\overline x=\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$;方差:${s^2}=\frac{1}{n}[{{{({{x_1}-\overline x})}^2}+{{({{x_2}-\overline x})}^2}+…+{{({{x_n}-\overline x})}^2}}]$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将$\sqrt{a}•\root{3}{a}$化成分数指数幂为(  )
A.${a^{\frac{1}{6}}}$B.${a^{\frac{5}{6}}}$C.${a^{\frac{7}{6}}}$D.${a^{\frac{2}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若正实数a,b满足$a+b+\frac{1}{a}+\frac{1}{b}=5$,则a+b的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且a2+b2-c2-ab=0.若△ABC的面积为$\frac{\sqrt{3}}{2}$c,则ab的最小值为(  )
A.24B.12C.6D.4

查看答案和解析>>

同步练习册答案