精英家教网 > 高中数学 > 题目详情
16.函数$f(x)=x+2cosx,x∈[{0,\frac{π}{2}}]$的最大值为$\frac{π}{6}$+$\sqrt{3}$.

分析 求出f(x)的导数,令导数为0,可得极值点,求出单调区间,可得极大值,且为最大值.

解答 解:函数$f(x)=x+2cosx,x∈[{0,\frac{π}{2}}]$的导数为f′(x)=1-2sinx,
由1-2sinx=0,解得x=$\frac{π}{6}$∈[0,$\frac{π}{2}$],
当x∈[0,$\frac{π}{6}$]时,f′(x)>0,f(x)递增;
当x∈[$\frac{π}{6}$,$\frac{π}{2}$]时,f′(x)<0,f(x)递减.
可得f(x)在x=$\frac{π}{6}$处取得极大值,且为最大值$\frac{π}{6}$+$\sqrt{3}$.
故答案为:$\frac{π}{6}$+$\sqrt{3}$.

点评 本题考查导数的运用:求单调区间和极值、最值,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若命题p:?x∈R,x2+1<0,则¬p:(  )
A.?x0∈R,x02+1>0B.?x0∈R,x02+1≥0C.?x∈R,x2+1>0D.?x∈R,x2+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,AB=BC,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=a或2a时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|1≤x≤2},B={x|x≤a},若A⊆B,则a的取值范围是(  )
A.{a|a≥2}B.{a|a>2}C.{a|a≥1}D.{a|a≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0.
(1)求证:f(x)是奇函数;
(2)若f(1)=$\frac{1}{2}$,试求f(x)在区间[-2,6]上的最值;
(3)是否存在m,使f(2log2x)2-4)+f(4m-2(log2x))>0对于任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)设p:实数x满足(x-3a)(x-a)<0,其中a>0,q:实数x满足$\left\{\begin{array}{l}{x^2}-3x≤0\\{x^2}-x-2>0\end{array}\right.$,若p是?q的充分不必要条件,求实数a的取值范围;
(2)设命题p:“函数$f(x)=\frac{x^3}{3}+\frac{{m{x^2}}}{2}+x+3$无极值”;命题q:“方程$\frac{x^2}{m}+{y^2}=1$表示焦点在y轴上的椭圆”,若p或q为真命题,p且q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=\frac{{p{x^2}+8}}{3x+q}$是奇函数,且$\frac{5}{2}<f(2)<3,p∈Z$,
(1)求实数p,q的值;
(2)判断函数f(x)在(-∞,-2)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是(  )
A.x2=-$\frac{9}{2}$y或y2=$\frac{4}{3}$xB.x2=$\frac{4}{3}$y
C.x2=$\frac{4}{3}$y 或 y2=-$\frac{9}{2}$xD.y2=-$\frac{9}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将$\sqrt{a}•\root{3}{a}$化成分数指数幂为(  )
A.${a^{\frac{1}{6}}}$B.${a^{\frac{5}{6}}}$C.${a^{\frac{7}{6}}}$D.${a^{\frac{2}{3}}}$

查看答案和解析>>

同步练习册答案