精英家教网 > 高中数学 > 题目详情

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:我羊食半马.马主曰:我马食半牛.今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:我羊所吃的禾苗只有马的一半.马主人说:我马所吃的禾苗只有牛的一半.打算按此比例偿还,他门各应偿还多少?该问题中,1斗为10升,则羊主人应偿还多少升粟?(

A.B.C.D.

【答案】C

【解析】

设牛、马、羊所吃禾苗分别为是公比为的等比数列,根据等比数列的求和公式求出首项,再根据等比数列的通项公式即可求解.

设牛、马、羊所吃禾苗分别为

是公比为的等比数列,∴

解得,∴羊主人应偿还:升粟.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,已知平面的中点,,过点,连接.

1)求证:平面平面

2)若直线与平面所成角的正切值为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点MN的极坐标分别为(20),(),圆C的参数方程θ为参数).

(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;

(Ⅱ)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为,直线l的参数方程为为参数,0≤απ).

1)求曲线C的直角坐标方程.并说明曲线C的形状;

2)若直线l经过点M10)且与曲线C交于AB两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O及其内接等腰三角形绕底边上的高所在直线旋转而成,如图2.已知圆O的半径为,设,圆锥的侧面积为S圆锥的侧面积R-底面圆半径,I-母线长))

1)求S关于的函数关系式;

2)为了达到最佳观赏效果,要求圆锥的侧面积S最大.S取得最大值时腰的长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,已知.是线段的中点.

1)求直线与平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游戏公司对今年新开发的一些游戏进行评测,为了了解玩家对游戏的体验感,研究人员随机调查了300名玩家,对他们的游戏体验感进行测评,并将所得数据统计如图所示,其中.

1)求这300名玩家测评分数的平均数;

2)由于该公司近年来生产的游戏体验感较差,公司计划聘请3位游戏专家对游戏进行初测,如果3人中有2人或3人认为游戏需要改进,则公司将回收该款游戏进行改进;若3人中仅1人认为游戏需要改进,则公司将另外聘请2位专家二测,二测时,2人中至少有1人认为游戏需要改进的话,公司则将对该款游戏进行回收改进.已知该公司每款游戏被每位专家认为需要改进的概率为,且每款游戏之间改进与否相互独立.

i)对该公司的任意一款游戏进行检测,求该款游戏需要改进的概率;

ii)每款游戏聘请专家测试的费用均为300/人,今年所有游戏的研发总费用为50万元,现对该公司今年研发的600款游戏都进行检测,假设公司的预算为110万元,判断这600款游戏所需的最高费用是否超过预算,并通过计算说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和焦点为F的抛物线上一点,M上,当点M时,取得最小值,当点M时,取得最大值,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有限项的、正整数的递增数列,并满足如下条件:对任意不大于各项总和的正整数,总存在一个子列,使得该子列所有项的和恰好等于.这里的‘子列’是指由原数列中的一部分项(包括一项、所有项)组成的新数列.

1)写出的值;

2)“成等差数列”的充要条件是“各项总和恰好是其项数、项数平方值的等差中项”.为什么?请说明理由.

3)若,写出“项数最少时,中的最大项”的值.

查看答案和解析>>

同步练习册答案