【题目】筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m的筒车上的每一个盛水桶都按逆时针方向作角速度为
rad/min的匀速圆周运动,平面示意图如右下图,己知筒车中心O到水面BC的距离为2m,初始时刻其中一个盛水筒位于点P0处,且∠P0OA=
(OA//BC),则8min后该盛水筒到水面的距离为____m.
![]()
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为
(t为参数,α为直线的倾斜角).以平面直角坐标系xOy极点,x的正半轴为极轴,取相同的长度单位,建立极坐标系.圆的极坐标方程为ρ=2cosθ,设直线与圆交于A,B两点. (Ⅰ)求圆C的直角坐标方程与α的取值范围;
(Ⅱ)若点P的坐标为(﹣1,0),求
+
取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行
B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
C. 垂直于同一条直线的两条直线相互垂直
D. 若两条直线与第三条直线所成的角相等,则这两条直线互相平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的两个焦点分别为
和
,短轴的两个端点分别为
和
,点
在椭圆
上,且满足
,当
变化时,给出下列三个命题:
①点
的轨迹关于
轴对称;②
的最小值为2;
③存在
使得椭圆
上满足条件的点
仅有两个,
其中,所有正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
经过
,
,
,
三点,
是线段
上的动点,
,
是过点
且互相垂直的两条直线,其中
交
轴于点
,
交圆
于
、
两点.
(1)若
,求直线
的方程;
(2)若
是使
恒成立的最小正整数,求三角形
的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
且函数
图象上点
处的切线斜率为
.
(1)试用含有
的式子表示
,并讨论
的单调性;
(2)对于函数图象上的不同两点
如果在函数图象上存在点
使得点
处的切线
,则称
存在“跟随切线”.特别地,当
时,又称
存在“中值跟随切线”.试问:函数
上是否存在两点
使得它存在“中值跟随切线”,若存在,求出
的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若f(-1)=f(1),求a,并直接写出函数
的单调增区间;
(2)当a≥
时,是否存在实数x,使得
=一
?若存在,试确定这样的实数x的个数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,“cosA>cosB”是“sinA<sinB”的 ( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆
与
轴交于
两点(
在
的上方),直线
.
![]()
(1)当
时,求直线
被圆
截得的弦长;
(2)若
,点
为直线
上一动点(不在
轴上),直线
的斜率分别为
,直线
与圆的另一交点分别
.
①问是否存在实数
,使得
成立?若存在,求出
的值;若不存在,说明理由;
②证明:直线
经过定点,并求出定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com