ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÉÏÏîµãΪB1£¬ÓÒ¡¢ÓÒ½¹µãΪF1¡¢F2£¬¡÷B1F1F2ÊÇÃæ»ýΪ
3
µÄµÈ±ßÈý½ÇÐΣ®
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨II£©ÒÑÖªP£¨x0£¬y0£©ÊÇÒÔÏß¶ÎF1F2Ϊֱ¾¶µÄÔ²ÉÏÒ»µã£¬ÇÒx0£¾0£¬y0£¾0£¬Çó¹ýPµãÓë¸ÃÔ²ÏàÇеÄÖ±ÏßlµÄ·½³Ì£»
£¨III£©ÈôÖ±ÏßlÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬Éè¡÷AF1F2£¬¡÷BF1F2µÄÖØÐÄ·Ö±ðΪG¡¢H£¬ÇëÎÊÔ­µãOÔÚÒÔÏß¶ÎGHΪֱ¾¶µÄÔ²ÄÚÂð£¿ÈôÔÚÇë˵Ã÷ÀíÓÉ£®
£¨I£©¡ß
1
2
b•2c
=
3
£¬a=2c£¬a2=b2+c2£®
½âµÃc2=1£¬b2=3£¬a2=4£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º
x2
4
+
y2
3
=1

£¨¢ò£©¡ßF1F2ÊÇÔ²µÄÒ»ÌõÖ±¾¶£¬¡àÔ²µÄ·½³ÌΪx2+y2=1£¬
ÓÖP£¨x0£¬y0£©ÊǸÃÔ²ÔÚµÚÒ»ÏóÏÞ²¿·ÖÉϵÄÇÐÏßµÄÇе㣬
¡àkl
y0
x0
=-1
£¬½âµÃkl=-
x0
y0
£®
¡àÇÐÏß·½³ÌΪy-y0=-
x0
y0
(x-x0)
£¬ÓÖ
x20
+
y20
=1
£¬
»¯Îªl£ºx0x+y0y-1=0£®
¡àÇÐÏß·½³ÌΪl£ºx0x+y0y-1=0£®
£¨III£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòG(
x1
3
£¬
y1
3
)
£¬H(
x2
3
£¬
y2
3
)
£®
ÈôÔ­µãOÔÚÒÔÏß¶ÎGHΪֱ¾¶µÄÔ²ÄÚ£¬Ôò
OH
OG
£¼0
£¬¼´
x1x2
9
+
y1y2
9
£¼0
£¬¼´x1x2+y1y2£¼0£¬
ÏÂÃæ¸ø³öÖ¤Ã÷£ºÁªÁ¢
x0x+y0y-1=0
x2
4
+
y2
3
=1
£¬
ÏûÈ¥xÕûÀíΪ(4
x20
+3
y20
)y2-6y0y+3-12
x20
=0
£¬
¡ày1+y2=
6y0
4
x20
+3
y20
£¬y1y2=
3-12
x20
4
x20
+3
y20
£¬
¡àx1x2=
1-y0y1
x0
1-y0y2
x0
=
1-y0(y1+y2)+
y20
y1y2
x20
=
4-12
y20
4
x20
+3
y20
£¬
¡àx1x2+y1y2=
7-12(
x20
+
y20
)
4
x20
+3
y20
=-
5
x20
+3
£¼
0£®
¡àÔ­µãOÔÚÒÔÏß¶ÎGHΪֱ¾¶µÄÔ²ÄÚ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
1
2
£¬ÇÒ¾­¹ýµãP(1£¬
3
2
)
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèFÊÇÍÖÔ²CµÄ×ó½¹£¬ÅжÏÒÔPFΪֱ¾¶µÄÔ²ÓëÒÔÍÖÔ²³¤ÖáΪֱ¾¶µÄÔ²µÄλÖùØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤Ϊ2
3
£¬ÓÒ½¹µãFÓëÅ×ÎïÏßy2=4xµÄ½¹µãÖØºÏ£¬OÎª×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèA¡¢BÊÇÍÖÔ²CÉϵIJ»Í¬Á½µã£¬µãD£¨-4£¬0£©£¬ÇÒÂú×ã
DA
=¦Ë
DB
£¬Èô¦Ë¡Ê[
3
8
£¬
1
2
]£¬ÇóÖ±ÏßABµÄбÂʵÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©¾­¹ýµãA£¨1£¬
3
2
£©£¬ÇÒÀëÐÄÂÊe=
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãB£¨-1£¬0£©ÄÜ·ñ×÷³öÖ±Ïßl£¬Ê¹lÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£®Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·¿É½Çø¶þÄ££©ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ³¤Ö᳤ÊÇ4£¬ÀëÐÄÂÊΪ
1
2
£®
£¨¢ñ£©ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©Éè¹ýµãP£¨0£¬-2£©µÄÖ±Ïßl½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬ÇÒM£¬N²»ÓëÍÖÔ²µÄ¶¥µãÖØºÏ£¬ÈôÒÔMNΪֱ¾¶µÄÔ²¹ýÍÖÔ²CµÄÓÒ¶¥µãA£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ¶ÌÖ᳤Ϊ2£¬ÀëÐÄÂÊΪ
2
2
£¬Éè¹ýÓÒ½¹µãµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬¹ýA£¬B×÷Ö±Ïßx=2µÄ´¹ÏßAP£¬BQ£¬´¹×ã·Ö±ðΪP£¬Q£®¼Ç¦Ë=
AP+BQ
PQ
£¬ÈôÖ±ÏßlµÄбÂÊk¡Ý
3
£¬Ôò¦ËµÄȡֵ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸