精英家教网 > 高中数学 > 题目详情
(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面积S△ABC=3,求边长a的值.
分析:(I)利用三角函数的恒等变换化简 函数的解析式为sin(2x-
π
6
),由此求得函数的最小正周期,再根据角的范围求出sin(2x-
π
6
) 值域.
(Ⅱ)在△ABC中,由 f(
A
2
+
π
3
)=
4
5
,b=2
,可得 cosA=
4
5
,sinA=
3
5
.再由 面积S△ABC=3 求出c=5,再用余弦定理求得a的值.
解答:解:(I)∵函数 f(x)=
3
sinxcosx-cos2x+
1
2
=
3
2
sin2x - 
1+cos2x
2
+
1
2
=sin(2x-
π
6
),
故函数的最小正周期等于π.
∵x∈[0,
12
]

∴-
π
6
≤2x-
π
6
3
,故所求函数的值域为[-
1
2
,1].
(Ⅱ)在△ABC中,∵f(
A
2
+
π
3
)=
4
5
,b=2

∴cosA=
4
5
,sinA=
3
5

再由面积S△ABC=3=
1
2
bc
sinA,解得 c=5.
再由余弦定理可得 a2=b2+c2-2bc•cosA=13,
解得a=
13
点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,余弦定理的应用以及解三角形,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•德州一模)定义运算
.
ab
cd
.
=ad-bc
,函数f(x)=
.
x-12
-xx+3
.
图象的顶点是(m,n),且k、m、n、r成等差数列,则k+r=
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)若a=log20.9,b=3-
1
3
,c=(
1
3
)
1
2
则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知
x+y-5≤0
y≥x
x≥1
,则z=2x+3y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)对于直线m,n和平面α,β,γ,有如下四个命题:
(1)若m∥α,m⊥n,则n⊥α
(2)若m⊥α,m⊥n,则n∥α
(3)若α⊥β,γ⊥β,则α∥γ
(4)若m⊥α,m∥n,n?β,则α⊥β
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
π
2
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2,△ABC
的面积等于3,求边长a的值.

查看答案和解析>>

同步练习册答案