精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为D,若存在闭区间[a,b]?D,使得函数f(x)满足:①f(x)在[a,b]上是单调函数;②f(x)在[a,b]上的值域是[2a,2b],则称区间[a,b]是函数f(x)的“和谐区间”.下列结论错误的是(  )
A、函数f(x)=x2(x≥0)存在“和谐区间”
B、函数f(x)=2x(x∈R)不存在“和谐区间”
C、函数f(x)=
4x
x2+1
(x≥0)存在“和谐区间”
D、函数f(x)=log2x(x>0)不存在“和谐区间”
分析:A、B、C中,可以找出定义域中的“和谐区间”,从而作出正确的选择.D中,假设存在“和谐区间”[a,b],会得出错误的结论.
解答:解:A中,当x≥0时,f(x)=x2在[0,2]上是单调增函数,且f(x)在[0,2]上的值域是[0,4],∴存在“和谐区间”,原命题正确;
B中,当x∈R时,f(x)=2x在[1,2]上是单调增函数,且f(x)在[1,2]上的值域是[2,4],∴存在“和谐区间”,原命题错误;
C中,当x≥0时,f(x)=
4
x+
1
x
≤2在[0,1]上是单调增函数,且f(x)在[0,1]上的值域是[0,2],∴存在“和谐区间”,原命题正确;
D中,当x>0时,f(x)=log2x是单调增函数,假设存在[a,b]满足题意,则f(a)=2a,且f(b)=2b,即log2a=2a,且log2b=2b;
∴22a=a,且22b=b,即4a=a,且4b=b;这与函数的单调性矛盾,∴假设不成立,即函数不存在“和谐区间”,原命题正确;
故选:B.
点评:本题考查了新定义下的函数的性质与应用问题,解题时应理解新定义中的题意与要求,转化为解题的条件与结论,是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案