精英家教网 > 高中数学 > 题目详情
6.若A,B互为对立事件,其概率分别为P(A)=$\frac{1}{y}$,P(B)=$\frac{4}{x}$,且x>0,y>0,则x+y的最小值为9.

分析 由对立事件性质得P(A)+P(B)=$\frac{1}{y}+\frac{4}{x}$=1,由此利用基本不等式能求出x+y的最小值.

解答 解:A,B互为对立事件,其概率分别为P(A)=$\frac{1}{y}$,P(B)=$\frac{4}{x}$,且x>0,y>0,
∴P(A)+P(B)=$\frac{1}{y}+\frac{4}{x}$=1,
∴x+y=(x+y)($\frac{1}{y}+\frac{4}{x}$)=$\frac{x}{y}+1+4+\frac{4y}{x}$≥5+2$\sqrt{\frac{x}{y}•\frac{4y}{x}}$=9.
当且仅当$\frac{x}{y}=\frac{4y}{x}$时取等号,∴x+y的最小值为9.
故答案为:9.

点评 本题考查两数和的最小值的求法,是基础题,解题时要认真审题,注意对立事件及基本不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)=x2+bx+c(b,c∈R),若f(-1)=f(2),且函数y=f(x)-x的值域为[0,+∞).
(1)求函数f(x)的解析式;
(2)若函数g(x)=2x-k,当x∈[1,2]时,记f(x),g(x)的值域分别为A,B,若A∪B=A,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果X~N(μ,σ2),设m=P(X=a)(a∈R),则(  )
A.m=1B.m=0C.0≤m≤1D.0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={x|x>0},B={x|x<4},则∁A(A∩B)等于(  )
A.{x|x<0}B.{x|0<x<4}C.{x|x≥4}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设不等式组$\left\{\begin{array}{l}x>0\\ y>0\\ y≤-nx+3n\end{array}$所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*),(整点即横、纵坐标均为整数的点).
(1)计算a1,a2,a3的值;
(2)求数列{an}的通项公式an
(3)记数列{an}的前n项和为Sn,且Tn=$\frac{S_n}{{3•{2^{n-1}}}}$,若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知y=f(x)是定义在 R 上的奇函数,且y=f(x+$\frac{π}{2}$)为偶函数,对于函数y=f(x)有下列几种描述:
①y=f(x)是周期函数;
②x=π是它的一条对称轴;
③(-π,0)是它图象的一个对称中心;
④x=$\frac{π}{2}$是它的一条对称轴. 
其中描述正确的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是连续的偶函数,且当x>0时,f(x)是单调函数,则满足f(x)=f($\frac{x+2015}{x+2016}$)的所有x之和为(  )
A.-4031B.-4032C.-4033D.-4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,已知a3=6,S3=15.
(1)求{an}的首项a1和公差d的值;
(2)设数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+a3b3+…+anbn=(n2+n)•2n+1.求数列{bn}的通项公式bn及前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式-2x2+7x-3<0的解集为(  )
A.{x|$\frac{1}{2}$<x<3}B.{x|x<$\frac{1}{2}$或x>3}C.{x|-$\frac{1}{2}$<x<3}D.

查看答案和解析>>

同步练习册答案