精英家教网 > 高中数学 > 题目详情
16.不等式-2x2+7x-3<0的解集为(  )
A.{x|$\frac{1}{2}$<x<3}B.{x|x<$\frac{1}{2}$或x>3}C.{x|-$\frac{1}{2}$<x<3}D.

分析 原不等式可化为(2x-1)(x-3)>0,可得其对应方程的根,进而可得解集.

解答 解:-2x2+7x-3<0等价于2x2-7x+3>0,即为(2x-1)(x-3)>0,解得x<$\frac{1}{2}$或x>3,
故选:B.

点评 本题考查一元二次不等式的解集,因式分解是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若A,B互为对立事件,其概率分别为P(A)=$\frac{1}{y}$,P(B)=$\frac{4}{x}$,且x>0,y>0,则x+y的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,AB是圆O的直径,直线MN切圆O于C,CD⊥AB,AM⊥MN,BN⊥MN,给出下列四个结论:
①∠1=∠2=∠3;②AM•CN=CM•BN;③CM=CD=CN;④△ACM∽△ABC∽△CBN.
则其中正确结论的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且Sn是2a与-2nan的等差中项,其中a≠0.
(1)求数列{an}的前三项a1,a2,a3,并猜想数列的通项公式;
(2)利用(1)的猜想,若S10=90,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点F1(-c,0),右焦点F2(c,0),若椭圆上存在一点P使|PF1|=2c,∠F1PF2=60°,则该椭圆的离心率e为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若log2x+log2y=2,则$\frac{1}{x}$+$\frac{2}{y}$的最小值为(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列{an}满足a1=1,an+1+(-1)nan=2n,则{an}的前100项和为5100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,一简单几何体ABCDE的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.若AC=BC=BE=2,
(1)BE边上是否存在一点M,使得AD和CM的夹角为60°?
(2)求锐二面角O-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,直线l的参数方程为:$\left\{\begin{array}{l}x=2+tcosα\\ y=\sqrt{3}+tsinα\end{array}$(t为参数,其中0<α<$\frac{π}{2}$),椭圆M的参数方程为$\left\{\begin{array}{l}x=2cosβ\\ y=sinβ\end{array}$(β为参数),圆C的标准方程为(x-1)2+y2=1.
(1)写出椭圆M的普通方程;
(2)若直线l为圆C的切线,且交椭圆M于A,B两点,求弦AB的长.

查看答案和解析>>

同步练习册答案