精英家教网 > 高中数学 > 题目详情
7.如图所示,AB是圆O的直径,直线MN切圆O于C,CD⊥AB,AM⊥MN,BN⊥MN,给出下列四个结论:
①∠1=∠2=∠3;②AM•CN=CM•BN;③CM=CD=CN;④△ACM∽△ABC∽△CBN.
则其中正确结论的序号是①③④.

分析 利用圆周角判断①的正误;相似三角形判断②的正误;三角形全等判断③的正误;三角形相似判断④的正误.即可得出结论.

解答 解:∵AB是圆O的直径,CD⊥AB,∴∠2=∠3,
∵直线MN切圆O于C,∴∠1=∠2,∴∠1=∠2=∠3,①对;
利用△AMN∽△CNB得$\frac{AM}{CM}$=$\frac{CN}{BN}$,∴AM•BN=CM•CN,②错.
利用△AMN≌△ADC,可得CM=CD,△CDB≌△CNB,可得CD=CN,∴CM=CD=CD,③对;
利用等角的余角相等得到△ACM∽△ABC∽△CBN,④对.
故答案为:①③④.

点评 本题考查圆的切线的性质,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如果X~N(μ,σ2),设m=P(X=a)(a∈R),则(  )
A.m=1B.m=0C.0≤m≤1D.0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是连续的偶函数,且当x>0时,f(x)是单调函数,则满足f(x)=f($\frac{x+2015}{x+2016}$)的所有x之和为(  )
A.-4031B.-4032C.-4033D.-4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,已知a3=6,S3=15.
(1)求{an}的首项a1和公差d的值;
(2)设数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+a3b3+…+anbn=(n2+n)•2n+1.求数列{bn}的通项公式bn及前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a>b>0,c∈R,则下列不等式恒成立的是(  )
A.a|c|>b|c|B.ac2>bc2C.a2c>b2cD.$\frac{1}{a}$<$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=ex-ax-1(x∈R)
(1)当a>0时f(x)的单调区间.
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,正方形ABCD的边长为2$\sqrt{2}$,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,且FO⊥平面ABCD,FO=$\sqrt{3}$.
(1)求BF与平面ABCD所成的角的正切值;
(2)求证:FC∥平面ADE;
(3)求三棱锥O-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式-2x2+7x-3<0的解集为(  )
A.{x|$\frac{1}{2}$<x<3}B.{x|x<$\frac{1}{2}$或x>3}C.{x|-$\frac{1}{2}$<x<3}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知{an}为等差数列,且前19项的和为S19=190,则a10=10.

查看答案和解析>>

同步练习册答案