精英家教网 > 高中数学 > 题目详情
12.已知f(x)=ex-ax-1(x∈R)
(1)当a>0时f(x)的单调区间.
(2)若f(x)在定义域R内单调递增,求a的取值范围.

分析 求出函数f(x)的导数f'(x):
(1)利用导数f'(x)>0和f'(x)<0,求出x的取值范围即可;
(2)根据f(x)在R内单调递增f'(x)≥0在R上恒成立,求出a的取值范围.

解答 解:∵f(x)=ex-ax-1,x∈R,
∴f'(x)=ex-a;
(1)当a>0时,令f'(x)>0,解得x>lna,
同理令f'(x)<0,解得x<lna;
∴f(x)的递增区间是(lna,+∞),单调递减区间(-∞,lna);…(6分)
(2)∵f(x)在R内单调递增,
∴f'(x)≥0在R上恒成立,
即a≤ex在R上恒成立;
又∵ex>0,
∴a≤0,
即a的取值范围是a≤0.…(12分)

点评 本题考查了利用导数判断函数的单调性问题,也考查了不等式恒成立的问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.海南省椰树集团引进德国净水设备的使用年限(年)和所需要的维修费用y(千元)的几组统计数据如表:
x23456
y2.23.85.56.57.0
(Ⅰ)请根据上表提供的数据,用最小二乘法求出$\widehaty$关于x的线性回归方程$\widehaty$=$\hat b$x+$\hat a$;
(Ⅱ)我们把中(Ⅰ)的线性回归方程记作模型一,观察散点图发现该组数据也可以用函数模型$\widehaty$=c1ln(c2x)拟合,记作模型二.经计算模型二的相关指数R2=0.64,
①请说明R2=0.64这一数据在线性回归模型中的实际意义.
②计算模型一中的R2的值(精确到0.01),通过数据说明,两种模型中哪种模型的拟合效果好.
参考公式和数值:用最小工乘法求线性回归方程系数公式$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.R2=1-$\frac{{\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}}}{{\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}$,$\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}$=0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)(x∈R)的图象如图所示,f′(x)是f(x)的导函数,则不等式(x-1)f′(x)<0的解集为(  )
A.(-∞,$\frac{1}{2}$)∪(1,2)B.(-1,1)∪(1,3)C.(-1,$\frac{1}{2}$)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求由曲线y=x+1与x=1,x=3,y=0所围的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,AB是圆O的直径,直线MN切圆O于C,CD⊥AB,AM⊥MN,BN⊥MN,给出下列四个结论:
①∠1=∠2=∠3;②AM•CN=CM•BN;③CM=CD=CN;④△ACM∽△ABC∽△CBN.
则其中正确结论的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,PA=AD=DC=$\frac{1}{2}$AB=1,PM=$\frac{1}{2}$MB.
(I)证明:面PAD⊥面PCD;
(2)证明:PD∥平面MAC;
(3)求三棱锥P-AMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且Sn是2a与-2nan的等差中项,其中a≠0.
(1)求数列{an}的前三项a1,a2,a3,并猜想数列的通项公式;
(2)利用(1)的猜想,若S10=90,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若log2x+log2y=2,则$\frac{1}{x}$+$\frac{2}{y}$的最小值为(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinωx,2cosωx),$\overrightarrow{b}$=(2cosωx,cosωx)(ω∈N*),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+k,且f(x)图象中相邻两条对称轴间的距离不小于$\frac{π}{2}$.求f(x)的单调递减区间,若f(x)=0在x∈[0,$\frac{π}{2}$]上有解,求k的取值范围.

查看答案和解析>>

同步练习册答案