精英家教网 > 高中数学 > 题目详情
2.海南省椰树集团引进德国净水设备的使用年限(年)和所需要的维修费用y(千元)的几组统计数据如表:
x23456
y2.23.85.56.57.0
(Ⅰ)请根据上表提供的数据,用最小二乘法求出$\widehaty$关于x的线性回归方程$\widehaty$=$\hat b$x+$\hat a$;
(Ⅱ)我们把中(Ⅰ)的线性回归方程记作模型一,观察散点图发现该组数据也可以用函数模型$\widehaty$=c1ln(c2x)拟合,记作模型二.经计算模型二的相关指数R2=0.64,
①请说明R2=0.64这一数据在线性回归模型中的实际意义.
②计算模型一中的R2的值(精确到0.01),通过数据说明,两种模型中哪种模型的拟合效果好.
参考公式和数值:用最小工乘法求线性回归方程系数公式$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.R2=1-$\frac{{\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}}}{{\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}$,$\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}$=0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

分析 (Ⅰ)先做出两组数据的平均数,把平均数和条件中所给的两组数据代入求解b的公式,做出b的值,再求出a的值,写出回归直线的方程.
(Ⅱ) ①R2=0.64表明“净水设备的使用年限解释了64%的维修费用的变化”,或者说“净水设备的维修费用
的差异有64%是由净水设备的使用年限引起的”
②R2取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.

解答 解:(Ⅰ)∵$\sum_{i=1}^5{{x_i}^2=}4+9+16+25+36=90$,且$\overline x=4,\overline y=5,n=5$,∴$\hat b=\frac{112.3-5×4×5}{90-5×16}=\frac{12.3}{10}=1.23$$\hat a=5-1.23×4=0.08$
∴回归直线为$\widehaty=1.23x+0.08$.
(Ⅱ) ①R2=0.64表明“净水设备的使用年限解释了64%的维修费用的变化”,或者说“净水设备的维修费用
的差异有64%是由净水设备的使用年限引起的”
②$\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}=0.651$,$\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}=15.78$,${R^2}=1-\frac{{\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}}}{{\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}$=0.96R2
取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.
由于模型一中的相关指数R2=0.96大于0.64,说明模型一的拟合效果好.

点评 本题考查线性回归方程的求解和应用,是一个中档题,解题的关键是正确应用最小二乘法来求线性回归方程的系数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足不等式组$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,则$\frac{{{{(x-y)}^2}}}{xy}$的取值范围是$[0,\frac{4}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在三棱锥P-ABC中,若PA=PB=BC=AC=5,PC=AB=4$\sqrt{2}$,则其的外接球的表面积为41π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过点P(1,1)作直线l,分别交x,y正半轴于A,B两点.
(1)若直线l与直线x-3y+1=0垂直,求直线l的方程;
(2)若直线l在y轴上的截距是直线l在x轴上截距的2倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果X~N(μ,σ2),设m=P(X=a)(a∈R),则(  )
A.m=1B.m=0C.0≤m≤1D.0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过A(4,-3),B(2,-1)作直线4x+3y-2=0的垂线l1,l2,则直线l1,l2间的距离为$\frac{14}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={x|x>0},B={x|x<4},则∁A(A∩B)等于(  )
A.{x|x<0}B.{x|0<x<4}C.{x|x≥4}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知y=f(x)是定义在 R 上的奇函数,且y=f(x+$\frac{π}{2}$)为偶函数,对于函数y=f(x)有下列几种描述:
①y=f(x)是周期函数;
②x=π是它的一条对称轴;
③(-π,0)是它图象的一个对称中心;
④x=$\frac{π}{2}$是它的一条对称轴. 
其中描述正确的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=ex-ax-1(x∈R)
(1)当a>0时f(x)的单调区间.
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

同步练习册答案