精英家教网 > 高中数学 > 题目详情
12.已知实数x,y满足不等式组$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,则$\frac{{{{(x-y)}^2}}}{xy}$的取值范围是$[0,\frac{4}{3}]$.

分析 利用分式函数的性质结合换元法设t=$\frac{y}{x}$,进行转化,然后作出不等式组对应的平面区域,利用线性规划的知识进行求解即可.

解答 解:$\frac{{{{(x-y)}^2}}}{xy}$=$\frac{{x}^{2}-2xy+{y}^{2}}{xy}$=$\frac{x}{y}$+$\frac{y}{x}$-2,
设t=$\frac{y}{x}$,则$\frac{{{{(x-y)}^2}}}{xy}$=t+$\frac{1}{t}$-2
作出不等式组对应的平面区域如图:
则t=$\frac{y}{x}$的几何意义是区域内的点到原点的斜率,
由图象知OC的斜率最小,OB的斜率最大,
由$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即B(1,3),此时OB的斜率t=$\frac{3}{1}$=3,
由$\left\{\begin{array}{l}{x+y-4=0}\\{2x-y-5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即C(3,1),此时OC的斜率t=$\frac{1}{3}$,
即$\frac{1}{3}$≤t≤3,
∵y=t+$\frac{1}{t}$-2在$\frac{1}{3}$≤t≤1上递减,在1≤t≤3递增,
∴当t=1时,函数取得最小值y=1+1-2=0,
当t=3或$\frac{1}{3}$时,y=$\frac{1}{3}$+3-2=$\frac{4}{3}$,
即0≤y≤$\frac{4}{3}$,
即$\frac{{{{(x-y)}^2}}}{xy}$的取值范围是$[0,\frac{4}{3}]$,
故答案为:$[0,\frac{4}{3}]$.

点评 本题主要考查线性规划的应用,根据分式的性质,利用换元法进行转化结合基本不等式的性质是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.几何体的三视图(单位:cm)如图所示,则此几何体各面中直角三角形有3个,其几何体的体积为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${({\frac{16}{81}})^{-\frac{1}{4}}}$+2lg4+lg$\frac{5}{8}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O是△ABC所在平面内一点,若对任意k∈R,恒有|$\overrightarrow{OA}$-$\overrightarrow{OB}$-k$\overrightarrow{BC}$|≥|$\overrightarrow{AO}$-$\overrightarrow{CO}$|,则△ABC一定是(  )
A.直角三角形B.钝角三角形C.锐角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.棱长都相等的三棱锥P-ABC,平面α经过点P且与平面ABC平行,平面β经过BC且与棱PA平行,α∩平面PBC=m,α∩β=n,则(  )
A.m⊥nB.m,n成60°角C.m∥nD.m,n成30°角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a91=-136.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数 f(x)的导数为 f'(x),且满足关系式 f(x)=x3•$\int_0^2{xdx+{x^2}f'(1)+3x}$,则 f'(2)的值等于-9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.我校要从参加数学竞赛的1000名学生中,随机抽取50名学生的成绩进行分析,现将参加数学竞赛的1000名学生编号如下000,001,002,…,999,如果在第一组随机抽取的一个号码为015,则抽取的第40个号码为795.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.海南省椰树集团引进德国净水设备的使用年限(年)和所需要的维修费用y(千元)的几组统计数据如表:
x23456
y2.23.85.56.57.0
(Ⅰ)请根据上表提供的数据,用最小二乘法求出$\widehaty$关于x的线性回归方程$\widehaty$=$\hat b$x+$\hat a$;
(Ⅱ)我们把中(Ⅰ)的线性回归方程记作模型一,观察散点图发现该组数据也可以用函数模型$\widehaty$=c1ln(c2x)拟合,记作模型二.经计算模型二的相关指数R2=0.64,
①请说明R2=0.64这一数据在线性回归模型中的实际意义.
②计算模型一中的R2的值(精确到0.01),通过数据说明,两种模型中哪种模型的拟合效果好.
参考公式和数值:用最小工乘法求线性回归方程系数公式$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.R2=1-$\frac{{\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}}}{{\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}$,$\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}$=0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

同步练习册答案